Annexure-I

Centre for Computer Science and Applications Dibrugarh University

COURSE STRUCTURE / SYLLABUS MASTER OF COMPUTER APPLICATIONS (MCA) PROGRAMME WITH BRIDGECOURSE

1+2-YEARS DURATION FULL-TIME PROGRAMME

With effect from the session 2022-23

(Approved in the meeting of the Board of Studies in Computer Science held on 28-07-2022)

Credit : Overall Credit: 90 Bridge Course Credit: 0 Core Course Credit: 78 Elective Course Credit: 12

Master of Computer ApplicationSyllabus Structure

<u>Bridge Course</u> (Only for students not having adequate Mathematics/ Computer Science / Information Technology <u>background</u>)

Bridge Course: 1st Semester

Course	Title of the Paper				
		L	T	P	Credit
BCO 101	Fundamentals of Computer	2	1	1	0
BCO 102	Mathematics-I	3	1	0	0
BCO 103	Computing Lab-I	1	1	2	0
BCO 104	Basics of System Software	2	1	1	0
Total Credit			lit	0	

Bridge Course: 2nd Semester

Course	urse Title of the Paper				
		L	T	P	Credit
BCO 201	Web Basics	2	1	1	0
BCO 202	Mathematics-II	3	1	0	0
BCO 203	Computing Lab-II	0	0	4	0
BCO 204	Communicative English and Personality Development	2	1	1	0
Total Credit					0

Two-Year MCA Syllabus Structure

1st Semester:

Course	Title of the Paper	Credits				
		L	T	P	Total	
	Core					
MCA 101	Formal Language and Automata	2	1	1	4	
MCA 102	Computer Programming and Problem Solving	2	1	1	4	
MCA 103	Digital Design	2	1	1	4	
MCA 104	Object Oriented Programming and Design (Java)	2	1	1	4	
MCA 105	Discrete Mathematics	3	1	0	4	
	Elective (any one)			•		
MCA 106	Accounting and Financial Management	2	1	1	4	
MCA 107	Oral and Written Communication	2	1	1	4	
MCA 108	Organizational Behaviour	2	1	1	4	
	Audit Course					
MCA 109	Scientific Writing using LateX		(Audi	t Cours	e)	
	Total Credit				24	

2nd Semester:

Course	Title of the Paper	Credits			
		L	T	P	Total
	Core				
MCA 201	Data and File Structures	2	1	1	4
MCA 202	Data Communication and Computer Network	2	1	1	4
MCA 203	Computer Organisation and Architecture	2	1	1	4
MCA 204	Numerical Analysis and Statistical Techniques	2	1	1	4
MCA 205	Database Management System	2	2	1	4
	Elective (any one)				
MCA 206	Optimization Techniques and Queuing Theory	2	1	1	4
MCA 207	Graph Theory	2	1	1	4
MCA 208	Fuzzy Sets and Applications	2	1	1	4
MCA 209	Image Processing and Pattern Classification	2	1	1	4
	Audit Course			•	
MCA 210	Computer Graphics and Multimedia		(Audi	t Cours	e)
Total Credit				24	

3rd Semester:

Course	Title of the Paper	Credits				
		L	T	P	Total	
	Core					
MCA 301	Design and Analysis of Algorithm	2	1	1	4	
MCA 302	Data Mining and Machine Learning	2	1	1	4	
MCA 303	Operating Systems	2	1	1	4	
MCA 304	Software Engineering	2	1	1	4	
MCA 305	Web Technology	2	1	1	4	
Elective (any one)						
MCA 306	Introduction to Data Science	2	1	1	4	
MCA 307	Cloud Computing	2	1	1	4	
MCA 308	Cryptography and Internet Security	2	1	1	4	
MCA 309	Python Programming	2	1	1	4	
	Audit Course					
MCA 310	Artificial Intelligence	(Audit Course			·se)	
	Total Credit				24	

4th Semester:

Course	Title of the Paper		
		Marks	
	MAJOR PROJECT		
MCA 401	i) Project Seminar and Viva	150	
MCA 401	ii) Final Project Report	100	
	iii) Monthly Reports (Internal)	150	
	Total Credit		18

Note:

- *i)* In all the semesters the centre will offer the optional papers as per the availability of respective faculty members.
- *ii)* The result of the Audit course will be reflected in the grade sheet.

Course no : BCO 101	Title of the Paper:	Credits			
	Fundamental of Computers	L-2 T-1	P-0	Total-0	
Objective:					
 This course is designed Discuss about complexity of co	with an objective so that the students omputers and their applications. ental concepts of computer hardware a uter applications, including word proc sentations. omputer viruses and the operating syst , students are expected to be able to: er hardware and peripheral devices	will be able to and software and become far essing, spreadsheets, databar eem environment, both Wind	miliar with a ses, and lows and Lint	JX.	
 Familiar with sc Discuss about fi Accomplish cre Distinguish the Explore about th Identify compute 	le management ating basic documents, worksheets, pr advantages and disadvantages of diffe ne computer viruses. er risks and safety.	esentations and databases rent operating systems			
	Theory (TH:BC	CO-101)			
	Total Marks: (In Semester Evaluation –40 & I –60)	100 End Semester Evaluation			
Unit 1: Introduction to Brief history of devel types of computers: A super computers, gene Palmtop etc.	o computer and information technol opment of computers, computer sy nalog, Digital, Hybrid, general, s erations of computers, personal con	ogy. /stem concepts, capabilition pecial purpose, Micro, r nputers, types of personal	Mark es and limita nini, mainfr computers –	s: 12 ations, ame, Laptop,	
Unit 2: Computer On Basic components of a	rganization and working: computer system, Input devices, ou	tput devices, storage devic	ces.	Marks: 12	
Unit 3: Number Syst Binary, Decimal, Hexa of characters, integers gates and Truth Table.	em and Logic Gates decimal, and Octal systems, Conve and fractions, Binary arithmetic, B	rsion from one system to t CD, EBCDIC, Grey Codes	he other, rep s, Introductio	Marks: 12 presentation on to Logic	
Unit 3: Computer so Need of software, typ machine, assembly, h spread sheet, presenta	ftware: es of software, system software an igh level, 4GL, their merits and d tion graphics.	d application software, pr emerits. Application soft	ogramming ware-word j	Marks: 12 languages, processing,	
Unit4: Operating Sy Introduction to Comp Linux, Unix)	stem uter virus, Introduction to Operat	ing Systems (Disk operat	N ting system,	Aarks: 12 Windows,	
Text Books:					
 Thareja R., "Fu Sinha P.K., "Co Rajaraman, V.," 	ndamentals of Computers", 2019, Seco mputer Fundamentals", 2012, Sixth E Computer Fundamentals", 2014,Sixth	ond Edition, Oxford Univers dition, BPB Publication Edition, PHI	ity Press.		

4. Sirivastava S.S,"Ms-Office",2015, Laxmi Publication

Reference Books:

- 1. Goel.A.,,"Computer Fundamentals", 2020, The World Book Depot
- 2. Balagurusamy. E., "Computing Fundamentals and C Programming" 2017, 2nd Edition, McGraw HillEducation
- 3. Ram.B.,"*Computer Fundamentals: Architecture and Organization*",2013,5th Edition, New Age Publication

Course no: BCO 102	Title of the Paper:		(Credits	
	Mathematics-I	L: 3	T: 1	P: 0	Total: 0
Objective: This course is designed	with an objective to		1	1	
 Illustrate the ideas and techniques from discrete mathematics which are widely used in computer science. Introduce mathematical logic among students of Computer Science. Introduce set, function, relations, permutation and combinations which are used in database management, Programming Techniques, Turing Machine etc. 					
of agrapl	and movement of robots and many	used in analyzother areas.	zing the rel	ationshi	p between the vertices
ng outcomes					
On completion of the c	ourse, the students will be able to:				
 Define and exp themthrough co Explain and ap 	lain various methods pertaining to Co omputer programs. ply the basic methods of discrete mat	mbinatorics, l	Matrix Alg	ebra, De cience.	terminants and apply
Theory (TH:BCO-102) Total Marks: 100 (In Semester Evaluation –40 & End Semester Evaluation – 60)					
Propositions, truth table	es, logical equivalence, algebra of pro	positions, tau	tologies an	d contra	diction.
Unit II: Sets; Cartesian product	, Relations – their types; Functions, F	uzzy set –con	ncept.	Ma	rks: 12
Unit III: Complex numbers, ope	rations on complex numbers, Permuta	ations, Combi	nations.	Ma	rks: 12
Unit IV:				Mar	ks: 12
Elementary concept of	of matrix and determinants, inverse	e of a matrix	, elementa	ry conc	ept of vectors.
Unit V: Probability Collection	of data frequency distribution meas	ires of central	l tendency :	Mark and disp	ss: 12 ersion
 Text Books: 1. Biggs N.L., "Discrete Mathematics", 2nd Edition, Oxford University Press, 2009. 2. Goldberg J. L., Potter M. C., Edward A. "Advanced Engineering Mathematics"; Third Edition, Oxford University Press, 2005. 					
Keterence Books: 1. 2. 3.	Lipschutz S., Lipson M. L., Patil V. <i>Outlines</i>)",3rdEdition, Tata McGray Grimaldi R.P., " <i>Discrete and Comb</i> <i>Introduction</i> ", 5 th Edition, Pearson,2 Sharma K.J., " <i>Discrete Mathematics</i>	H., "Discreta w Hill,2013. <i>inatorial Mat</i> 003. s", 3rd Editior	e Mathema hematics, A n, Macmilla	tics (Sch An Appli an India	naums ed Limited,2010

Г

Write programs using C as a language.	
Write the basic terminology used in computer programming	
Write, compile and debug programs in C language.	
Use different data types in a computer program.	
Design programs involving decision structures, loops and function	18.
Theory (BCO-103)	
Total Marks: 100	
(In semester evaluation 40 & End semester	r evaluation
60)	
(Basics of	
Unit 1: Introduction to 'C' Language	Marks: 12
Expressions, Constants and Literals, Simple assignment statement, programs	Basic input/output statement, Simple "C"
Unit 2: Conditional Statements and Loops	Marks: 12
Decisionmaking within a program, conditions, Relational Operators, Logic statement	cal Connectives , if statement, if-else
,Loops: while loop, do while, for loop, Nested loops, Infinite loops, Switch	n statement, structures Programming.
Unit 3: Arrays & Functions	Marks:12
One dimensional arrays: Array manipulation; Two dimensional arrays,	
Top-down approach of problem solving, Modular programming and funct structure, Passing arguments to a Function: call by reference; call by value arguments.	ions, Return Type, Function call, Block e, Recursive Functions, arrays as function
Unit 4: Structures	Marks: 12
Structure variables, initialization, structure assignment, nested structure, st arrays:arrays of structures, structures containing arrays.	tructures and functions, structures and
Unit 5: Pointers & File Processing	Marks: 12
Address operators, pointer type declaration, pointer assignment, pointer in	itialization, pointer arithmetic, functions and
pointers, Arrays and Pointers, pointer arrays. Concept of Files, File	
opening in various modes and closing of a file, Reading from a file, Writin	ng onto a file.
(Crophics Programming)	
(Graphics Programming)	
1 Cottfried Buron "Drogramming with C" 2rd edition Tota McGraw	bill 2010
 Counted byton <i>Frogramming with C</i> 5 control, rata McOfaw Relaguruswami D "Programming with ANSLC" 6th Edition Tata 	McGrow Hill 2012
2. Dataguruswann, D 170grummung wun Arvsi-C 0 Edition, Tata	
1 Brian W Kernighan Dannis M Ditchia "The C Deconstruction La	nguaga (Ansi C Varsion)
"latestreprint, Prentice Hall India Learning,1990.	nguage (Ansi C Version)

Title of the Paper:

Computing Lab-I

Course no: BCO 103

Basic reasoning abilities.

Prerequisites:

Objective: The course is designed with an objective to Developing programming logic using C.

Learning Outcome: On completion of the course, students will be able to:

Credits

Total: 0

P: 0

L: 2

T: 1

2. Dromey, R.G. "How to solve it by Computer", latest reprint, Prentice, 2011.

Course No: BCO-104	Title of the Paper:		C	redits	
	Basics of System Software	L: 3	T: 0	P:1	Total:0
 Course No: BCO-104 Objective: This course is designed with an objective: Introduce the major conception Provide insight into the value code generation, and use of provide generation, and use of provide practical programm Introduce the basic conception Provide practical programm Learning Outcome: After completing this course the structure basic programm Explain the relationship becomplementation of assemb Describe the design of a concode and the files produce Explain lexical analysis plate 	Jule of the Paper: Basics of System Software jective to pt areas of language translation and comp rious phases of compiler and its use, code of symbol table. of of parser (LL parser and LR parser). ming skills necessary for constructing a c udents will be able to etween system software and machine arch lers, linkers and loaders. mpiler and the phases of program translati d by these phases. hase and its underlying formal models su	L: 3 iler desi optimiz ompiler. nitecture, ion from	gn. ation tec , design source c nite state	P:1 P:1 chniques and code to e e automa	Total:0 , machine executable ata, push-
down automata and their co	Total Marks: 100	regular o		ons and g	grammars
(In Semes	ter Evaluation –40 & End Semester Evalu	lation-60))		
Unit I: Overview Definition and classification of sy Assemblers: Assembly language Assembler, Assembler macros an Unit II: Linkers & Loaders	Unit I: Overview15 MarksDefinition and classification of system software.Assemblers: Assembly language, Assembly process, Design of Assembler: Two Pass and Single PassAssembler, Assembler macros and macroprocessors.				
Basic concepts, Static and dynan	nic Linking, Functions of a loader, Types	of Load	ers.		
Unit III: Interpreter, Debugger Interpreter: Overview of interpre Debugger: Types, features. Editor: Types, structure.	r and Editor tation, Benefits of interpretation.		12	Marks	
Unit IV: Compiler Introduction to Compiler, Types Lexical Analyzer: The Role of th Recognition of Tokens. Regular Parser: Need and role of the pars Parser, LL(1) Parser, Bottom-up SLR Parser, LALR Parser, CLR	of Compiler, The Phases of a Compiler, on the Lexical Analyzer, Input Buffering, Spe Expressions. er, Context Free Grammars, Top Down p Parsing: Shift Reduce Parser, Operator-P Parser.	Compile cificatio arsing: I receden	18 r-Constr n of Tol Recursiv ce Parse	Marks ruction T cens, re Desce r, LR Pa	Pools. nt urser,
Text Books: 1. Pal S., "Systems Programming" 2. Aho A.V., Shethi R., Ulman J.I Education, 2002. 3. Dhamdhere D. M., "Systems P Edition, 2009.	, Oxford University Press, 2011. D., "Compilers - Principles, Techniques Programming and Operating Systems", T	and Too Sata Mc	ols", 2nd Graw Hi	l Edition ill Comp	ı, Pearson pany, 2nd

Reference Books:

Donovan J. J., "Systems Programming", Tata McGraw Hill Company, 2nd Edition, 2000.
 Raghavan V., "Principles of Compiler Design", Tata McGraw Hill Education Publishers, 2010.

Discussion:

> Real life applications with programming approach

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No: BCO-201	Title of the	Credit			
	Paper:	L: 2	T: 0	P: 1	Total: 0
	Web Basics				

Objective:

The course is designed with an objective to

- Discuss different technology aspects of internet.
- Explain how an internet works.
- ▶ Write program in HTML, CSS to design web pages

Learning Outcome:

On completion of the course, students will be able to

- \triangleright Develop web pages.
- ▶ Resolve Code and troubleshoot HTML web pages, incorporating CSS.

Theory (BCO-201)

Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-

60)

Unit I: Introduction to Internet

Basics of internet, Internet protocols, Internet vs Intranet, ISP, URLs, Email, File Transfer Protocol, Internet chatting, Web Servers ,Web Browsers and their functions, Search Engines, Internet issues, security. Introduction to E-Commerce, Meaning, Objective, challenges and opportunities.

Unit II: Introduction to HTML

Basics of HTML, HTML Tag, HTML Documents, Head & Body Sections, Building HTML documents, Insertingtexts, Images, Hyperlinks, Backgrounds and Color controls, Different HTML tags, Table layout, Use of font size& Attributes, List types and its tags, forms in web pages

Unit III: Introduction to CSS

Basic of CSS, Add style to document, Creating Style sheet rules, Style sheet properties, Font, Text, List, Color andbackground color, Box, Display properties.

Text Books:

- 1. Jain V.K.," O Level Module M 1.2 Internet & Webpage Designing"- BPB Publications, 2015
- 2. Whiteley D, "*E Commerce: Strategy, Technologies and Applications*", Tata McGraw hill, 1st edition.

Reference Books:

- 1. Joseph P.T., "E-Commerce An Indian Perspective (Second Edition)", S.J. Presentice-Hall of India
- 2. Leon A. and Leon M.,"Internet for Everyone", Vikas Publishing House Pvt. Ltd, New Delhi.

15 Marks

30 Marks

Course	Title of the Paper:	Credits			
No: BCO-202	Communicative English and Personality Development	L :3	T:1	P:0	Total: 0
	Development				

Objective:

The course is designed with an objective to

- Acquire better communication skills.
- ▶ Have a better personality which can help in dealing with different situations.
- Have a positive attitude and constructive professional mind
- Listen for different needs and ideas

Learning Outcome:

On completion of the course, students will be able to:

- > Exhibit professional attitude in their career perspectives.
- Show better communication skills
- Develop grooming techniques
- Build a constructive professional personality

Theory (BCO:202) Total Marks: 100 (In Semester Evaluation –40 & End Semester Evaluation –60)

Unit I: General Introduction:

Importance of English its Position, Communicating in English: Difference between the spoken and the written form, How to start dealing with hesitation and shyness.

Pronunciation: English vowels and consonants (RP), Getting to know the IPA, Words generally mispronounced-she, see, seat, cheat, etc, Difference between spelling and pronunciation, Choice of a proper model, Practical exercises

Unit II: Conversation:

Starting a conversation, Things to be kept in mind while engaging in conversation-fluency, accuracy, appropriateness, Planning, Turn taking, Practical exercises.

Situational Conversation:

Facing an interview board, Telephone talk, Wishes etc., Conversation with elders, friends, strangers etc., Terms related to different professions (Banking, Travel agency, Business etc.), Public speaking (Addressing a meeting; Debate; Group Discussion etc.), Practical exercises.

Unit III: Personality Meaning

Personality determinants, personality traits -theory of personality - development of personality from infancy to maturity, emotions and personality

Unit IV : Attitude

Concepts of attitude, formation of attitude, types of attitude, change of attitude values: concepts of values, types of values and behavior habits learning and unlearning of habits.

Unit V: Motivation

Meaning of motivation, nature of motivation, need of motivation personality development self development steps of personality developments.

Text Books :

- 1. Bansal, R.K. and J.B. Harrison, "Spoken English for India", Orient Longman.
- 2. Thorat, Ashok et al., "Enriching Your Competence in English", Orient Longman
- 3. Singh, Vandana., "The Written Word", Oxford Publication

11

Marks :10

Marks :10

Marks :10

Marks :15

Marks :15

Course No:	Course Name:	Credits					
BCO-203	Computing Workshop II	L:0 T: 0 P:4 Total:					
Objective: This course is designed	Objective: This course is designed with an objective to						
➢ Familiarize students with	➢ Familiarize students with the basic concept of MATLAB programming environments.						
Prerequisites: NA							
Learning Outcomes:							
On completion of the course, the	student will be able to						
 Understand the main fear simulation/analysis, data 	tures of MATLAB program develo analysis etc	pment environment for their use in system					
(In Sou	(BCO:203) Total Marks: 100	nester Evolution 60)					
(III Sei	nester Evaluation –40 & Enu Sel	nester Evaluation –00)					
Unit-I: Introduction to MATLA MATLAB interface, variable Operators: arithmetic, relation	Unit-I: Introduction to MATLAB MATLAB interface, variables keywords,, commands Operators: arithmetic, relational, logical bitwise						
Unit-II: Vectors and matrices i . Introduction to Vectors and r Creation, deletion, access and Matrix commands, matrix op	 Unit-II: Vectors and matrices in MATLB Introduction to Vectors and matrices, Creation, deletion, access and manipulation of vectors and matrices using MATLAB Matrix commands, matrix operations: determinant, inverse, rank, eigen value and vectors 						
Unit-III: MATLAB Scripts M files, Function files: prin	nary function, sub function, ways o	of creating script files, input output functions					
Unit-IV: Plotting in MATLAB Visualizing results using plot, subplot, histogram, bar graph, pie chart.							
Text Books:							
 Stormy Attaway, "MATLAB: A practical introduction to Programming and Problem Solving", College of Engineering, Boston University, Elsevier, Sixth Edition, 2022 							

Course no: BCO-204	Title of the Paper:	Credits				
	Mathematics-II	L: 3	T: 1	P: 0	Total:0	
 Objective: This course is designed with an objective to ➤ Describe problems of differential calculus and integral calculus. ➤ Introduce the idea of double and triple integral. ➤ Appreciate the purpose of using transforms to create a new domain in which it is easier to handle the problem that is being investigated. 						
 Learning outcome On completion of the course, students will be able to: ➢ Solve problems of differential calculus and integral calculus. ➢ Explain the idea of definite and multiple integrals. ➢ Find the Laplace and its inverse transforms of a function. 						
	Theory (BC	CO-204)				
(Total Mar In Semester Evaluation – 40& E	ks: 100 End Semester	r Evaluatio	on –60)		
Unit I: Limits, continuity and or	dinary differentiation.			Ma	rks: 12	
Unit II: Partial differentiation, H	omogeneous function, Euler's the	eorem on ho	omogeneou	Mar s function	ks: 12 18.	
Unit III: Marks: 12 Rolle's Theorem, Mean Value Theorem, Taylor's Series in Finite Form and Maclaurin's Series in Finite Form.						
Unit IV: Marks: 12 Maxima and Minima of functions of single variable and two variables.						
Unit V: Marks: 12 Indefinite integral, definite integrals, reduction formulae.						
Text Books: 1. Kreyszig E. "A 2. Ayres F., Mendels	dvanced Engineering Mathems son E. "Schaum's Outline of Cale	atics",Tent culus", 6th E	h Edition, Edition, Mo	Wiley,20 Graw Hil	015 1 Education,2013.	
Reference Books: 1. Silverman R.A., " 2. Garg R.L., Gupta	Essential Calculus with Applicat N., "Engineering Mathematics",	ions",5 th Ed 1st Edition,	ition, Dove Pearson,20	er Publica 015.	tions,2014.	
Discussion						

Example oriented.Proof of theorems not required.

Two-Year MCA Syllabus

Course No: Title of the Paper: Credits					
MCA 101	Formal Language and Automata	L: 2	T: 1	P: 1	Total: 4
Objective: This course is de ➤ Identify ➤ Design	esigned with an objective to different formal language classes and theirrelations grammars and recognizers for different formallangu	ships 1ages			
Learning Outco On completion of Design languag Transfo expressi Simplify Determine	ome: of the course, students will be able to: automata, regular expressions and context-free gran e. rm between equivalent deterministic and non-detern ions. y automata and context-free grammars. ine if a certain word belongs to a language.	nmars ao	ccepting finite au	or gene tomata,	erating a certain
	Total Marks: 100 (In Semester Evaluation –40 & End Semes	ter Evalı	ation-60))	
Unit I: Introdu	ctory Concept Topic		5 N	Iarks	
Alphabets, Lang	guages, Grammars.				
Unit II : Finite Equivalence of properties of reg Unit III: Regul	Automata (Deterministic and Nondeterministic) DFA's and NDFA's, conversion, automata with ε gular sets, minimization of finite automata ar Grammar	- transit	10 M tion, Mc 15 Ma	farks oore and rks	l Mealy machines,
Regular express expressions Pun context free lang	ions, regular languages, regular expression and equ nping Lemma and applications push down automata guages.	ivalence a and co	to FA, <i>I</i> ntext fre	Algebra e langu	ic laws for regular ages, properties of
Unit IV: Conte context-free gra language, pushd	xt Free Language mmars and languages, parsing (or derivation) an lown automaton (PDA), equivalence between CFG	d parse and PDA	10 Ma trees, an A , norma	r ks mbiguit al form	y of grammar and of CFG
Unit V: Contex Context sensitiv	t Sensitive Language e languages, linear bound automata		5 Mai	`ks	
Unit V: Turing Turing hypothe Variations of tu multihead. Univ	Machines sis, Turning compatibility, Turing machines as ning machines – non-deterministic, multiple tape, rersal turning machines, recursively enumerable lang	a transo two-wa guages, ¹	15 Mai ducer, r y infinit Undecid	*ks ecogniz te tape, able pro	er and acceptors, multidimensional, oblems.
	15				

Text Books:

- 1. Linz P., "An Introduction to Formal Language and Automata", Jones and Bartlett Publishers, Inc., USA, 2011.
- 2. MishraK. L. P., "Theory of Computer Science: Automata, Languages and Computation" PHI, 3rd Edition, 2009.

Reference Books:

- Nagpal C. K, "Formal Languages And Automata Theory", OXFORD UNIVERSITY PRESS, 2011
- 2. Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D, "Introduction to Automata Theory, Language and Computation", Addison –WEISLEY, 3rd edition, 2013.

Discussion

- Finite Automata
- Regular Language and Expression
- > Context free Grammar, Push Down Automata (PDA) and Turing Machines

Practical (MCA 101)

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No: Title of the Paper: Credits						
MCA 102	Computer Programming and Problem Solving	L: 2	T: 1	P: 1	Total: 4	
Objective:						
This course is des	signed with an objective to					
Describe	the fundamentals of C programming language.					
Demonst	rate C coding.					
Explain t	he skills for problem solving.					
Learning Outco	me:					
On completion of	the course, students will be able to:					
Solve pro	blems through simple C programs.					
> Develop	advance C program to solve real life problems.					
Analyze	the basics of graphics programming.					
	Total Marks: 100					
	(In Semester Evaluation –40 & End Semester	Evaluat	tion-60)			
Unit I. C fundar	nentals	1	10 Mark	S		
C fundamentals	variables data types operator & expression c	onsole]	I/O Cor	nditiona	1 Statements	
Control statemen	ts The C preprocessor			iuniona	i Statements,	
	s, me e preprocessor.					
Unit II: Array a	nd String		15 Marl	ks		
Defining an array	, array initialization, processing an array, passing	array to	a function	on, mul	tidimensional	
array, string func	tions.					
Unit III: Functio	on and Pointers		15 Mar	·ks		
Overview of a fu	nction, defining a function, accessing a function, f	unction	prototyp	es, call	by value, call	
by reference, recursion, Storage classes, other functions (sqrt(), exit(), malloc(), free()).					2	
Pointer declarati	ons, passing pointer to a function, pointer and o	one dim	ensional	array,	Operation on	
pointers, pointers	and multidimensional arrays, array of pointers, po	inters to	o function	ns, func	tion returning	
pointers, Comma	nd-line parameters.			,	0	
Unit IV: Structu	Unit IV: Structures and Unions 10 Marks					
Structures, Decla	ration and Initializing Structure, Accessing Struct	ure men	nbers, St	ructure	Assignments,	
Arrays of Structure, Passing Structure to function, Structure Pointer, Unions.						
Unit V: File	Unit V: File 10 Marks					
Defining and ope	ening a file, closing a file, input/output operation	s on file	es, error	handli	ng during I/O	
operations, rando	operations, random access files, command line arguments, programming examples. Dynamic Memory					
Allocation: Dynamic memory allocation, allocating a block of memory: malloc, allocating multiple blocks						
of memory: calloc, releasing the used space: Free, altering the size of a block:						
realloc, programming examples.						

Text Books:

- 1. Kanetkar Y., "Let Us C", BPB Publications; 14th edition,2016
- Balagurusamy, E. 'Programming in ANSI C', McGraw Hill Education (India), 6th Edition, 2012
- 3. Griffiths, D., '*Head First C*", Shroff/O'Reilly,' First edition, 2012.

Reference Books:

- 1. Kernighan, Brian W., Ritchie, Dennis M., '*The C Programming Language*",' PHI, 2nd edition.
- 2. Herbert, S., "C: the Complete Reference", McGraw Hill Education; 4th edition.
- 3. Gottfried, Byron S., '*Theory and Problems of Programming with C*', Tata McGraw Hill Publication

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:		Сі	edits	
MCA 103	Digital Design	L: 2	T: 1	P: 1	Total: 4

Objective:

The course is designed with an objective to

- > Represent and manipulate decimal numbers in different coding systems.
- Introduce several levels of digital systems from simple logic circuits to programmable logic devices and hardware description language, analysis and design.

Learning Outcome:

On completion of the course, the students will be able to

- > Construct logic circuits using logic gates.
- > Design both combinational and sequential circuits.
- > Identify, formulate and implement problems of digital logic.

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation –60)

Unit I: Representation of Information:

Number System: Binary, Octal, Hexadecimal, Positive and Negative Number, 1's and 2's complement, Arithmetic Operations: Addition, Subtraction, etc. Character codes: ASCII and BCD. Error detection and correction, parity codes and Hamming codes.

Unit II: Logic Design

Logic Gates and their characteristics, Boolean Algebra, Boolean variables and functions- canonical and standard forms, minimization of Boolean functions – Karnaugh Map.

Unit III: Combinational and Sequential Design:

Implementation of Boolean function and logic gates, concept of combinational design-Adder, Subtractor, Multiplexer, decoders, encoders, simple arithmetic and logic circuits. Concept of latch, Clock, Study of Flip-Flop- S-R, J-K, D,T. Counters- synchronous and asynchronous, Modes of counter, registers.

Unit IV: Memory and Programmable logic Design

PLA, PAL, FPGA concept and volatility.

Unit V: Basic CPU Organization :

Simple functional block diagram of a CPU, instruction execution process, Memory Units, Access time and cost considerations: random access, serial access, direct access.

Text Books:

- 1. Morris M. M., "Digital Logic and Computer Design", Pearson ,2022
- 2. Morris M. M., Cillet M. D."Digital Design", Pearson, 6th edition 2017.

Reference Books:

11. WakerlyJ.F.,"Digital Design: Principles And Practices", Pearson, 5th Edition, 2021

10 Marks

10 Marks

20 Marks

10 Marks

- 2. SalivahananS,Arivazhagan S., "*Digital Circuits and Design*", VIKAS Publishing House PVT LTD,5th Edition,2018.
- 3. Hamacher V.C. Vranestic Z.G, Zaky,S.G. "*Computer Organization*", McGraw-Hill, 6th edition , 2011.

Discussion:

Emphasis should be given to

- Logic circuits.
- Characteristics and functions of different electronics components.
- Simple mentioning of the fundamentals of memory units.

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:		Credi	its	
MCA 104	Object Oriented Programming and Design (Java)	L: 2	T: 1	P:1	Total: 4

Objective:

The course is designed with an objective to:

- > Explain Object-Oriented programming concepts and techniques.
- > Demonstrate core level Java Programs, debugging and testing.
- Show implementation of Object-Oriented concept using Java Programs.
- > Explain System modelling techniques using UML
- Illustrate the Use cases, Class diagram and Sequence and Activity diagrams.
- > Create the Object Oriented design of a system from the requirements model using UML class, object, and sequence diagrams.

Learning Outcome:

On completion of the course, students will be able to:

- Resolve programming problems using object oriented principles.
- > Apply Java programming syntax, control structures and Java programming concepts.
- Develop Java Applications.
- Identify Java standard libraries and classes.
- ▶ Write, compile, execute and troubleshoot Java programming.
- > Utilize Java Graphical User Interface in the program writing.
- Analyze and design a Java Program to solve real world problems based on object-oriented principles.
- > Apply the principles and practice of object oriented modelling and design in the construction of robust and maintainable programs.

Total Marks: 100

(In Semester Evaluation -40& End Semester Evaluation -60)

Unit I: Encapsulation and Data Abstraction:

Class, Objects, Methods, Constructors, Memory Allocation, Garbage Collection, Packages and Interfaces, Access Specifiers.

Unit II: Polymorphism and Inheritance Overloading, Overriding, Dynamic Method Dispatch. Single, Multilevel, Hierarchical, Extending a class, implementing an Interface.

Unit III: Exception Handling and Multithreading

Exception types, try, catch and finally blocks, custom exception, throw and throws. Creating threads, Join() and Sleep() methods, Synchronization, wait() and notify() methods.

Unit IV: The Java Library:

String handling, Collection framework, Input/ Output.

Unit V: Object Oriented Modelling as a Design Technique:

Introduction to UML, Overview, History, Usage, Diagrams.

Objects, Classes, Class Diagrams, Values and Attributes, Operation and Methods, Links and Associations, Multiplicity, Generalization and Inheritance, Aggregation. Events, States, Transitions and Conditions, State Diagrams.

Use Case Models, Use Case Diagrams, Sequence Models, Scenarios, Sequence Diagram, Activity Models, Activity Diagram.

12 Marks

12 Marks

12 Marks

12 Marks

Text Books:

- 1. Blaha M.R.,Rumbaugh J, "Object Oriented Modeling and Design with UML", Pearson Education, 2nd Edition, Reprint-2015.
- 2. MalhotraS, Choudhary S, "Programming in Java", Oxford University Press, 2nd Edition, 2015.

Reference Books:

- 1. Bruce E, "Thinking in Java", Pearson Publication.
- 2. Jaime N, Frederick A. H, "Introduction to Programming and Object-Oriented Design Using Java", Wiley Publication.

Practical

Total Marks: 50

(In Semester Evaluation -20 & End Semester Evaluation- 30)

(Practical will be as per the content of the paper)

MCA 105 Discrete Mathematics I · 2 T· 1 P· 1 Total	Course No:	Title of the Paper:		Credits				
Merr 105 Discrete Mathematics E. 2 1.1 1.1 100	MCA 105	Discrete Mathematics	L: 2	T: 1	P: 1	Total: 4		

Objective:

This course is designed with an objective to

- Provide tools from the topics of Discrete Mathematics for analysis and design of computer hardware and computer software.
- Provide the foundation for imbedding logical reasoning in computer science from the topics of propositional calculus.
- > Provide tools to reason for the efficiency of an algorithm.

Learning Outcome:

On completion of the course, students will be able to:

- > Learn some fundamental mathematical concepts and terminology.
- > Write an argument using logical notation and determine if the argument is or is notvalid.
- ➢ Use recursive definitions.
- > Count some different types of discrete structures.
- Demonstrate an understanding of relations and functions and be able to determine their properties.
- Model problems in Computer Science.
- Learn techniques for constructing mathematical proofs, illustrated by discrete mathematics examples.

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Set

10 Marks

10 Marks

Basic concepts of set, terminology, notation; Operation on sets, Algebra of sets, Countable and Uncountable set, Fuzzy set, Computer representation of sets.

Unit II: Relations and function

Relations, equivalence relations, Types of relation, properties of relation; Function, classification of functions, types of function, Some special functions;

Unit III: Logic

Logic operators, Truth table, Normal forms, Theory of inference and deduction, Mathematical induction, Predicate calculus; predicates and quantifiers.

Unit IV: Combinatorics

Basic counting techniques, Recurrence relations and their solutions. Generating functions.

Unit V: Ordered sets

Introductions, Ordered sets, Hase Diagrams of Partially Ordered sets, consistent enumerations supremum and infimum, isomorphic ordered sets well-ordered sets,

10 Marks

10 Marks

Unit V lattices	Unit VI: Lattice 10 Marks lattices, bounded lattices, distributive lattices, complements, complemented lattices					
Text B	ooks:					
1.	Kenneth H. Rosen : Discrete Mathematics and Its Applications, Mcgraw-Hill College; 6th					
	edition (January 5, 2006).					
2.	Biggs N.L., "Discrete Mathematics", 2nd Edition, Oxford University Press, 2009.					
Refere	nce Books:					
1.	Liu, C. L.: Introduction to Discrete Mathematics. McGraw Hill Education (India) Private					
	Limited (2008)					
2.	Trembley, Manohar: Discrete Mathematical Structures. McGraw Hill Education (India)					
	Private Limited (2 February 2001).					

3. Jiri Matousek, Invitation to Discrete Mathematics, Clarendon Press (23 July 1998)

Discussion

• Basics of Discrete Mathematics with suitable examples.

Course No:	Title of the Paper:		Cr	edits	
MCA 106	Accounting and Financial Management	L: 2	T: 1	P: 1	Total: 4
(Elective)					
Objective:					

This course is designed with an objective to

- > To impart basics of formal accounting process.
- > To give idea about financial statements and its preparation.
- > To give basics of financial management and management accounting.

Learning Outcome:

On completion of the course, students will be able to:

> Prepare financial statements and able to prepare reports on financial matters.

Total Marks: 100

(In Semester Evaluation -40 & End Semester Evaluation-60)

Unit I: Recording of Transactions

Meaning and definition of accounting, parties or users interested in accounting, branches of accounting. Accounting concepts and conventions. Basic accounting terminologies, Classification of accounts, Journal entry, ledger posting and balancing of ledger. Subsidiary Books- meaning and importance, preparation of cash book.

Unit II: Preparation of financial statements

Preparation of Trial Balance: Financial Statements – meaning, objectives, preparation of Trading and Profit and Loss Accounts, Balance Sheet – meaning and objectives and Preparation of Balance Sheet of sole Trading concern and corporate entities. Classification of Assets and Liabilities. Depreciation – meaning, causes, accounting for depreciation. Accounting Software – Tally (introductory part).

Unit III: Conceptual framework of finance

Financial Management - meaning and objectives, functions of financial management. Concept of capital structure-computation of cost of capital, concept and consequences of over and under capitalization, Management of Working Capital-need of working capital, operating cycle, sources of working capital.

Unit IV: Management Accounting Tools

Budget and Budgetary Control – definition, objectives of budget, classification, advantage, characteristics of budget, Preparation of production/sales and cash budget. Capital Budgeting: meaning, importance and methods of capital budgeting. Concept of Marginal Costing, Cost – Volume-Profit analysis, Break-even Point. Standard costing and variance analysis-material and labour variances

Text Books:

1. B.B.Dam, R.A.Sarda, R.Barman, B.Kalita, '*Theory and Practice of Accountancy (V-I)*, 'Capital Publishing Company, Guwahati.

15 Marks

15 Marks

15 Marks

15 Marks sification.

2. R.K.Sharma, S.K.Gupta, 'Management Accounting' Kalyani Publishers, Ludhiana

Reference Books:

- 1. M.Y. Khan, P.K.Jain, '*Principles of Financial Management*' Tata McGraw Hills, New Delhi.
- 2. Ravi M. Kishore, 'Cost and Management Accounting' Taxmann, New Delhi

Discussion:

• Real life approach of Accounting techniques

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:		(Credits	
MCA 107	Oral and Written Communication	L: 2	T: 1	P: 1	Total: 4
(Elective)					
Objective:					

This course is designed with an objective to

- > Develop skills in writing, digital presentation, and oral communication as complementary parts of communication and literacy.
- Develop and refine their own voice and sense of style.
- > Practice and refine different forms of communication that are appropriate for the multiple contexts and disciplines that they engage with.
- Realize thoroughly the relationship between form and content.

Learning Outcome:

On completion of the course, students will be able to:

- > Apply skills in writing, digital presentation, and oral communication as complementary parts of communication and literacy.
- Refine their own voice and sense of style.
- > Apply different forms of communication that are appropriate for the multiple contexts and disciplines that they engage with.
- Relate the relationship between form and content.
- > Use the role of drafting, revising, presenting, and receiving, processing, and using feedback as important parts of the writing process.

Total Marks: 100

(In Semester Evaluation -40 & End Semester Evaluation -60)

Unit I: Language and Communication:

Definition of Communication; Function and purpose of Communication; Process of Communication; Barriers of Effective Communication; Types of communication, Verbal communication, on-verbal communication; The Impact of Communication on Performance, Advantages and disadvantages of oral communication; Improving oral communication; One-to-One oral communication; Oral Presentations

Unit II: Listening Skills:

What is listening; Types of Listening; Barriers of Effective Listening; Strategies for Effective Listening; Semantic Markers; Listening to Complaints.

Unit III: Reading and Writing Skills:

Introduction, Definition and Meaning of Reading, Purpose of Reading, Types of Reading, SQ3R Technique of Reading, Note Taking; Paraphrasing; Elements of writing; Business Letter Writing; Other Business Communications.

Unit IV: Organizational Documents:

Introduction; Business Letter Writing, Types of Business Letter, Job application, Other Business Communication. Memo; Circulars and Notices.

15 Marks

15 Marks

15 Marks

Practical: MCA 107

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:		Cr	edits	
MCA 108	Organizational Behaviour	L: 2	T: 1	P: 1	Total: 4
(Elective)					

Objective:

This course is designed with an objective to

- Describe current research in organizational behavior and identify how can be applied to workplace settings
- Understand how application of OB frameworks, tools, and concepts can enhance individual, group, and organizational effectiveness
- Reflect one's own beliefs, assumptions and behaviors with respect to how individuals, groups and organizations act in order to expand the approaches and increase his / her organizational effectiveness

Learning Outcome:

On completion of the course, students will be able to:

- Describe current research in organizational behavior and identify how can be applied to workplace settings
- Distinguish how application of OB frameworks, tools, and concepts can enhance individual, group, and organizational effectiveness
- Reflect his / her own beliefs, assumptions and behaviors with respect to how individuals, groups and organizations act in order to expand the approaches to increase his / her organizational effectiveness.

30

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Focus and Purpose

Definition, need and importance of organizational behaviour - Nature and scope - Frame work -Organizational behaviour models.

Unit II: Individual Behaviour

Personality – types – Factors influencing personality – Theories – Learning – Types of learners – The learning process – Learning theories – Organizational behaviour modification.

Misbehaviour - Types - Management Intervention.

Emotions - Emotional Labour - Emotional Intelligence - Theories.

Attitudes - Characteristics - Components - Formation - Measurement- Values.

Perceptions – Importance – Factors influencing perception – Interpersonal perception- Impression Management.

Motivation - importance - Types - Effects on work behavior.

Unit III: Group Behaviour

Organization structure - Formation - Groups in organizations - Influence - Group dynamics Emergence of informal leaders and working norms - Group decision making techniques - Team building - Interpersonal relations - Communication - Control.

Unit IV: Leadership and Power

Meaning - Importance - Leadership styles - Theories - Leaders Vs Managers - Sources of power -Sources of power-Power centers - Power and Politics.

Unit V: Dynamics of Organizational Behaviour

Organizational culture and climate – Factors affecting organizational climate – Importance. Job satisfaction - Determinants - Measurements - Influence on behavior. Organizational change -Importance – Stability Vs Change – Proactive Vs Reaction change – the change process – Resistance to change - Managing change. Stress - Work Stressors - Prevention and Management of stress -Balancing work and Life. Organizational development - Characteristics - objectives -. Organizational effectiveness -

Text Books:

- 1. Stephen P. Robins, "Organisational Behavior", PHI Learning / Pearson Education, 11th edition. 2008.
- 2. Fred Luthans, "Organisational Behavior", McGraw Hill, 11th Edition, 2001

Reference Books:

- 1. Schermerhorn, Hunt and Osborn, "Organisational behavior", John Wiley, 9th Edition, 2008.
- 2. Udai Pareek, "Understanding Organisational Behaviour", 2nd Edition, Oxford Higher Education, 2004.

Practical

Total Marks: 50 (In Semester Evaluation -20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

10 Marks

15 Marks

15 Marks

5 Marks

<i>CourseNo:</i>	<i>Title of the Paper:</i> Scientific Writing using LaTex	AUDIT COURSE
MCA 109	Scientific Writing using Durex	
Objective: This course is > Descri	designed with an objectives to be scientific writing	
Learning Out After completi > Write > Typeso > Create	come: ng this course the students will be able to Project report in LaTeX. etting technical documents. presentation in beamer	
	Total Mark (In Semester Evaluation –40 & E	s: 100 nd Semester Evaluation –60)
Unit I: Installation of	the software LaTeX, editors of latex.	5 Marks
Unit II: Understanding	Latex compilation, Basic Syntex, Writing e	10 Marks equations, Matrix, Tables.
Unit III: Page Layout - making enviro of figures, List	- Titles, Abstract Chapters, Sections, References, Table of contents, Generating new of tables, Generating index.	15 Marks errences, Equation references, citation. List commands, Figure handling numbering, List
Unit IV: Packages: Geo listing.	ometry, Hyperref, amsmath, amssymb, al	10 Marks gorithms, algorithmic graphic, color, tilez
Unit V: Classes: article	e, book, report.	10 Marks
Unit VI: Presentation us	sing beamer.	10 Marks
Practical: • Applic 1. W 2. W 3. W 4. W 5. Pr	eations to: Vriting Résumé, Vriting question paper, Vriting articles Vriting research papers. resentation.	

 Frank Mittelbach, Michel Goossens, Johannes Braams, David Carlisle, Chris Rowley., "The LaTeX Companion", PHI, 2nd Edition, 2009.

Reference Books:

1. Leslie Lamport, "LaTeX: A document preparation system, User's guide and reference manual", Addison Wesley, 1994

Discussion

- Packages
- Editors of latex

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:	Credits			
MCA 201	Data and File Structures	L: 2	T: 1	P: 1	Total: 4

Objective:

This course is designed with an objective to

- > Explain linear and non-linear data structures and its applications.
- > Demonstrate the sorting and searching techniques and its efficiencies.
- > Illustrate various algorithm design techniques.
- > Implementing data structure techniques using C programs.
- > Explain various file structures and their utilities.

Learning Outcome:

On completion of the course, students will be able to:

- > Apply and analyze the concept of time, space complexity of an algorithm.
- Identify well-known generic data structures such as stack, queue, tree and related algorithms and apply them to solve problems.
- > Design data structures and algorithms to solve problems.
- > Comprehend the concept of file structures.
- > Implement selected data structures and searching/sorting algorithms Using C language.

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Fundamental Notions:

Primitive and composite data types, Time and Space Complexity of Algorithms, Concept of Big-O, small-o & Big- Ω .

Unit II: Linear Data Structure:

Stacks, Queues, Arrays, Linked Lists, Circular & Doubly Linked Lists.

Unit III: Trees

Introduction to Trees, Properties of Trees, Pedant vertices in a Tree, Center of a Tree, Rooted Binary Trees, Concepts of Trees, Extended Binary Trees, Complete Binary Trees, General Trees, Binary Search Trees, Weight balanced and Height balanced Trees, AVL Tree, Balanced Multi-Way Trees, Threaded Binary Trees.

Unit IV: Sorting and Searching:

Selection-sort, Insertion-sort, Bubble-sort, Quick-sort, Heap-sort, Merge-sort. Searching Techniques; Binary search, Linear search.

Unit V: File Structures:

Concepts of Fields, Records and Files, Concepts of Blocks, Clusters, Sectors. Sequential File Organization, Variable length Records and Text Files, Indexing Structures like B-trees, ISAM, Hashing Techniques for Direct Files, Inverted lists, Multilists.

12 Marks

12 Marks

12 Marks

12 Marks

Text Books:

- 1. Seymour L," Data Structures", Tata McGraw Hill, Revised first edition, 2014.
- 2. Baluja G.S., "Data Structure Through C", Dhanpat Rai Publication, 2016.

Reference Books:

1. Cormen, Leiserson, Rivest, "Introduction to Algorithms", Mil Press & McGraw - Hill Publication, 2012

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:	Credits							
MCA 202	Data Communication and Computer	L: 2	T:1	P:1	Total: 4				
	Network								
Objective:									
The course is desig	The course is designed with an objective to								
Describe the general principles of data communication.									
• Introduce c	omputer communication network design ar	nd its opera	ations						
Learning Outcome:									
On completion of th ➤ Design ➤ Simula	ne course, students will be able to: and analyze computer network. te and set up small networks.								
Total Marks: 100 (In Semester Evaluation –40 & End Semester Evaluation –60) Unit I: Dverview : Objectives and Applications of Computer Communication. Computer Communication Network Architecture : ISO-OSI reference model, Layer-wise functionality.									
Unit II: Physical Layer : modulation and multiplexing methods, communication media. Medium Assess Control protocols: ALOHA, CSMA, CSMA/CD, token ring, token bus, FDDI, satellite networks.									
U nit III : Data link layer: Fran Network layer: Rout	ning, error control techniques, SDLC protocing, Congestion and deadlock control, Inter	col. metworkin	g issue	s and devices	15 Marks , IP protocol.				
Unit IV: Transport layer: TCP/IP Protocol, concept of ATM network. End-to-end Data: Presentation formatting issues, data Compression, concept of encryption. Applications: E-mail, Remote login, File transfer, Network file system, Network management.									
 Forouzan, B. A. , Mosharraf .F ,: "Computer Networks: A Top-Down Approach", McGraw Hill Education (India) Private Limited,2011. Forouzan, B. A. "Data Communication and Networking "Tata Mc Graw Hill, 6th edition, 2014. 									
Reference Books 1. Trivedi. B, 2. Stallings, V	" Data Communication and Networks ", Ox V."Data and computer communications", P	tford Univ earson edu	ersity F acation	Press 1 st Editio Asia, 7 th Edit	on, 2016. ion, 2011.				

Discussion:

- Applications: E-mail, Remote login, File transfer, Network file system, Network management.
- Hands on practice on network setup

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:	Credits			
MCA-203	Computer Organization and Architecture	L: 2	T: 1	P: 1	Total: 4

Objective:

- The course is designed with an objective to
- > Describe the basic structure and operations of a digital computer.
- > Illustrate the different ways of communicating with I/O devices and standard I/O interfaces.
- > Indicate the relationship between a computer's instruction set architecture and its assembly language instruction set.
- > Describe fundamental embedded systems design paradigms, architectures.

Learning Outcome:

On completion of the course, the students will be able to

- > Create the programs for microprocessor and microcontroller based system.
- > Develop independent learning skills and be able to illustrate more about different computer architecture and hardware.
- > Identify high performance architecture design.

Total Marks: 100 (In Semester Evaluation -40& End Semester Evaluation -60)

Unit 1: CPU Architecture:

Instruction format - operand addressing formats; Instruction execution process - fetch and execution cycles, data path organization - single and two buses, micro programmed and hardwired control, RISC vs CISC.

Unit2: I/O Architecture:

Characteristics of simple I/O devices their controllers; I/O interface, data transfer synchronization memory - mapped and isolated I/O scheme, Bus arbitration mechanism; Modes of data transfer, direct memory access data transfer, Interrupt mechanism; priority schemes - daisy chaining, interrupt masking, Concept of DMA - cycle stealing and burst mode.

Unit 3:Memory Concepts:

Memory hierarchies - cache memory- Locality of reference, Direct Mapping, Associative Mapping, Block set associative mapping techniques ,Efficiency of cache system ,virtual memory -address space ,address mapping using pages memory page table.

Unit 4: Introduction to Embedded System:

Overview of Embedded System, Features, Applications, Hardware and software in Embedded System- RTOS, Basic differences of microprocessor and microcontroller, Concept of different controllers like 8051,PIC.

Unit 5: Programming concept of microprocessor and microcontroller: 12 Marks Introduction to 8085 microprocessor, addressing modes, Instruction sets, Assembly level programming, Programming concept of 8051 microcontroller.

TEXT BOOKS:

37

12 Marks

12 Marks

12 Marks

- Hamacher.V.C., Vranestic Z.G., Zaky S.G. "Computer Organization", McGraw-Hill,5th Edition,2011.
- 2. Mano M.M., "Computer System architecture", Pearson, 3rd Edition.
- 3. Kamal R," Embedded systems: architecture, programming and design ",Tata McGraw Hill publications,2nd edition,2013

REFERENCES:

- 1. Hamachar C., VranesicZ. ,Zaky S., Manjikian N."*Computer organization & Embedded Systems*", McGraw Hill International Edition, 2017.
- 2. Ram, B., *"Fundamentals of Microprocessors and Microcomputers"*, 5th edition, Dhanpat Rai Publications, 2012.

DISCUSSION:

➢ Foundations of Microprocessor 8085

Practical Total marks:50 (In Semester-20 and End Semester-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:	Credits			
MCA 204	Numerical Analysis and Statistical Techniques	L: 2	T: 1	P:1	Total: 4
Objective					

Objective:

This course is designed with an objective to

- Discuss different methods of Numerical Analysis.
- Explain different statistical methods and techniques.

Learning Outcome:

On completion of the course, students will be able to:

- > Apply different numerical methods in practical problems.
- > Use and apply various statistical techniques in real life problems.
- > Write computer programs on different numerical and statistical techniques.
- > Create software on different numerical and statistical techniques.

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation –60)

Unit I: Interpolation

Interpolation : Interpolation with equal intervals – Newton's forward and backward interpolation formula, use of operators Δ and E in polynomial interpolation, interpolation with unequal intervals – relation between divided differences and simple differences, Newton's general divided difference formula, and Lagrange's interpolation formula.

Unit II: Numerical Differentiation and Integration

Maximum or minimum value of the function using numerical differentiation. General quadrature formula of numerical integration, Trepezoidal rule, Simpsons one –third and three-eight's rule's, Weddle's rule. Numerical Solution of Differential Equations: Euler's method, Picard's method of successive approximation and Runge-Kutta method. Solution of system of Linear equation: Cramer's rule, elimination method by Gauss, Jordan's method, Gauss-Seidel's method. Solution of numerical equation using Newton-Raphson method.

Unit III: Probability theory

Basic terminology, different definitions of probability, elementary theorem with illustration, conditional probability – Bayes theorem (without proof) with real life examples, Random variables and their density and distribution functions. Mathematical expectations and its use in decision making (problems), variance and covariance, addition and multiplication theorem of expectation, moments and moment generating functions and their application.

Unit IV: Probability distributions and Test of significance:

Binomial, Poisson and Normal distributions and their simple properties (without derivation of the distribution), tests of significance, t-test, F-test (Emphasis should be given on numerical problems).

12 Marks

12 Marks

12 Marks

Unit V: Correlation and Regression Analysis

12 Marks

Karl-Pearson's coefficient of correlation, Rank correlation coefficient, Lines of regression, Method of Least squares, Fitting of second degree polynomial using the method of least squares.

Text Books:

- 1. Rao, G.S.S. B., "*Probability and Statistics for Engineers*", 3rd edition, Scitech Publications, 2006.
- 2. Das N.G, "Statistical Methods", 4th Edition, Tata McGraw Hill, 2012.

Reference Books:

- 1. Gupta, S.P. "Statistical Methods", 5th edition, Chand & Sons publication, 2012.
- 2. Gupta, S.C. and V.K. Kapoor, "*Fundamentals of Mathematical Statistics*", 5th edition, S Chand & Sons publication, 2010.

Discussion:

• Real life applications with programming approach

Practical

Total Marks: 50

(In Semester Evaluation –20 & End Semester Evaluation-30)

(Practical will be as per the content of the paper)

Corrse No: MCA 205 Database Management System Credits Objective: This course is designed with an objective to I: 2 T: 1 P: 1 Total: 4 Objective: This course is designed with an objective to Illustrate the basic database concepts, including the structure and operation of the relational data model. Construct simple and moderately advanced database queries using Structured Query Language (SQL). Illustrate logical database design principles, including E-R diagrams and database normalization. Learning Outcome: On completion of the course, students will be able to: Create a database using SQL. > Normalize a database. Normalize a database. Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Undrying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit II: Relational Model 12 Marks Undrying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structu						
MCA 205 Database Management System I.: 2 T: 1 P: 1 Total: 4 Objective: This course is designed with an objective to Illustrate the basic database concepts, including the structure and operation of the relational data model. Construct simple and moderately advanced database queries using Structured Query Language (SQL). Illustrate logical database design principles, including E-R diagrams and database normalization. Learning Outcome: On completion of the course, students will be able to: Create a database using a DBMS package. Construct queries using SQL. Normalize a database. Total Marks: 100 (In Semester Evaluation –40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit II: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Paritioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, func	Course No:	Title of the Paper:		Ci	redits	
Objective: This course is designed with an objective to > Illustrate the basic database concepts, including the structure and operation of the relational data model. > Construct simple and moderately advanced database queries using Structured Query Language (SQL). > Illustrate logical database design principles, including E-R diagrams and database normalization. Learning Outcome: On completion of the course, students will be able to: > Construct queries using SQL. > Normalize a database. Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit 1: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit 11: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure. File Organization. Unit II: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued depend	MCA 205	Database Management System	L: 2	T: 1	P: 1	Total: 4
 This course is designed with an objective to Illustrate the basic database concepts, including the structure and operation of the relational data model. Construct simple and moderately advanced database queries using Structured Query Language (SQL). Illustrate logical database design principles, including E-R diagrams and database normalization. Learning Outcome: On completion of the course, students will be able to: Create a database using a DBMS package. Construct queries using SQL. Normalize a database. 	Objective:					
 Fillustrate the basic database concepts, including the structure and operation of the relational data model. Construct simple and moderately advanced database queries using Structured Query Language (SQL). Illustrate logical database design principles, including E-R diagrams and database normalization. Learning Outcome: On completion of the course, students will be able to: C Create a database using a DBMS package. C Construct queries using SQL. Normalize a database. Total Marks: 100 (In Semester Evaluation –40 & End Semester Evaluation-60) Unit 1: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit 11: Relational Model 12 Marks Unit 11: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Paritioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit V: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Look based recovery (deferred and immediate database modification). Checkpoints, Shadow paging, Recovery with concurrent with transactions, Buffer managements in recovery	This course is des	signed with an objective to				
 Inistrate the basic database concepts, including the structure and operation of the relational data model. Construct simple and moderately advanced database queries using Structured Query Language (SQL). Illustrate logical database design principles, including E-R diagrams and database normalization. Learning Outcome: On completion of the course, students will be able to: Create a database using a DBMS package. Construct queries using SQL. Normalize a database. Total Marks: 100 (In Semester Evaluation –40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit II: Indexing and Relational Database Design 12 Marks Primary and Secondary, B + Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, asertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit V: Recovery System 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp B			1	<i>.</i>	6.4	
relational data model. Construct simple and moderately advanced database queries using Structured Query Language (SQL). Illustrate logical database design principles, including E-R diagrams and database normalization. Learning Outcome: On completion of the course, students will be able to: Create a database using a DBMS package. Construct queries using SQL. Normalize a database. Total Marks: 100 (In Semester Evaluation –40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Paritioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Strailizability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handing. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification). Checkpoints, Shadow paging, Recovery with concurrent with transactions. Buffer managements in recovery from loss of non - volatile storage. Locical undo locging.	➢ Illustrate	the basic database concepts, including the structur	e and op	eration	of the	
 Construct simple and moderately advanced database queries using Structured Query Language (SQL). Illustrate logical database design principles, including E-R diagrams and database normalization. Learning Outcome: On completion of the course, students will be able to: Create a database using a DBMS package. Construct queries using SQL. Normalize a database. Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit 1: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit 1: Relational Model 12 Marks Underlying concepts, Structure, File Organization. Unit 1: Indexing and Relational Database Design 12 Marks Underlying concepts, Structure, File Organization. Unit 1: Indexing and Relational Database Design 12 Marks Unit 19: Fransactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System Lomas Deadlock Handling. Unit V: Recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions and Buffer m	relational	l data model.				
Query Language (SQL). > Illustrate logical database design principles, including E-R diagrams and database normalization. Learning Outcome: On completion of the course, students will be able to: > Create a database using a DBMS package. > Construct queries using SQL. > Normalize a database. Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models La Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. 12 Marks Underlying concepts, Structure, File Organization. 12 Marks Unit II: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. <	Construct	t simple and moderately advanced database queries	s using S	Structur	ed	
 Y Hitsrate logical database design principles, including E-R diagrams and database normalization. Learning Outcome: On completion of the course, students will be able to: Create a database using a DBMS package. Construct queries using SQL. Normalize a database. Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit II: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit V: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks	Ouery Le	anguage (SOL)	0			
 Initistrate logical database design principles, including E-R diagrams and database normalization. Learning Outcome: On completion of the course, students will be able to: Create a database using a DBMS package. Construct queries using SQL. Normalize a database. Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit II: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Paritioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate da		le cicel detekses decise aviaciales including E.D.	1	1		
database normalization. Learning Outcome: On completion of the course, students will be able to: > Create a database using a DBMS package. > Construct queries using SQL. > Normalize a database. Image: Construct queries using SQL. > Normalize a database. Image: Construct queries using SQL. > Normalize a database. Image: Conserve the state of the course of the state of the s		logical database design principles, including E-R	diagrams	sand		
Learning Outcome: On completion of the course, students will be able to: Create a database using a DBMS package. Construct queries using SQL. Normalize a database. Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models I2 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit II: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation B	database	normalization.				
Learning Outcome: On completion of the course, students will be able to: > Create a database using a DBMS package. > Construct queries using SQL. > Normalize a database. Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Paritioned Hashing. 111 Hill: Indexing and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. 12 Marks Unit V: Recovery System 12 Marks Locy - based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recover						
Learning Outcome: On completion of the course, students will be able to: Create a database using a DBMS package. Construct queries using SQL. Normalize a database. Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models I Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit I: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit II: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grif File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based						
On completion of the course, students will be able to: > Create a database using a DBMS package. > Construct queries using SQL. > Normalize a database. Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit 1: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit 1: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit II: Indexing and Relational Database Design 12 Marks Primary and Secondary, B-t Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery.	Learning Outco	me:				
For the course, students with the date to. Create a database using a DBMS package. Construct queries using SQL. Normalize a database. Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models I2 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit II: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recove	On completion of	f the course students will be able to:				
 ▶ Create a database using a DBMS package. ▶ Construct queries using SQL. ▶ Normalize a database. ■ Normalize a database. ■ Total Marks: 100 (In Semester Evaluation –40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Logical undo logerine. Transaction rolback Restart recovery from loss of non - volatile storage. Logical undo logerine. Transaction rolback Restart recovery from loss of non - volatile storage. Logical undo logerine. 		the course, students will be able to.				
 ➢ Construct queries using SQL. ➢ Normalize a database. Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit III: Indexing and Relational Database Design Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Logical undo logerine, Transaction rollback Restart recovery from loss of non - volatile storage. Logical undo logerine, Transaction rollback Restart recovery form loss of non - volatile storage. Logical undo logerine. 	> Create a	database using a DBMS package.				
 Normalize a database. Total Marks: 100 (In Semester Evaluation –40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging. Transaction rollback Restart recovery 	 Construct 	t queries using SQL.				
Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models), record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. 12 Marks Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Logical undo loggica Concep	Normaliz	ze a database.				
Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. 12 Marks Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Paritioned Hashing. 11 Marks Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery. Recovery from loss of non - volatile stor						
Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. 12 Marks Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Logical undo logging. Teamse						
Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. 12 Marks Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with trans						
Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. 12 Marks Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. 12 Marks Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery						
(In Semester Evaluation -40 & End Semester Evaluation-60) Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. 12 Marks Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. 12 Marks Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery from loss of non - volatile storage. Logica		Total Marks: 100				
Unit I: Introduction to DBMS & ER Models 12 Marks Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. 12 Marks Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. 12 Marks Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Logic based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery from loss of non - volatile storage. Logical undo logging. Transaction rolback Restart recovery		(In Semaster Evoluction 40 & End Semaster E	voluotio	~ 60		
Unit I: Introduction to DBMS & ER Models12 MarksConcept DBMS, Advantage of using DBMS, Data Models (object based logical models, record basedlogical models), DBMS users, Overall System Structure.ER diagrams, generalization, specialization, aggregation. Database models - Network model,Hierarchical model, and Relational model.Unit II: Relational Model12 MarksUnderlying concepts, Structure, Study of Relational Languages (relational algebra, relationalcalculus, SQL), Storage and File Structure, File Organization.Unit III: Indexing and Relational Database Design12 MarksPrimary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing,Multiple Key Access, Grid File, Partitioned Hashing.Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies),Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form.Unit IV: Transactions and Concurrency Control12 MarksConcepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability.Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, MultiversionSchemes, and Deadlock Handling.Unit V: Recovery SystemLog based recovery (deferred and immediate database modification), Checkpoints, Shadow paging,Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss ofop a volatile storage. Logical undo logging. Transaction rollback Restart recovery		(In Semester Evaluation $-40 \approx \text{End Semester E}$	valuatio	1-00)		
Unit I: Introduction to DBMS & ER Models12 MarksConcept DBMS, Advantage of using DBMS, Data Models (object based logical models, record basedlogical models), DBMS users, Overall System Structure.ER diagrams, generalization, specialization, aggregation. Database models - Network model,Hierarchical model, and Relational model.Unit II: Relational Model12 MarksUnderlying concepts, Structure, Study of Relational Languages (relational algebra, relationalcalculus, SQL), Storage and File Structure, File Organization.Unit III: Indexing and Relational Database Design12 MarksPrimary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing,Multiple Key Access, Grid File, Partitioned Hashing.Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies),Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form.Unit IV: Transactions and Concurrency Control12 MarksConcepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability.Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, MultiversionSchemes, and Deadlock Handling.Unit V: Recovery SystemLog based recovery (deferred and immediate database modification), Checkpoints, Shadow paging,Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss ofnon - volatile storage. Logical undo logging. Transaction rollback Restart recovery	TT	4 4- DDMC 9 ED M- J-L 121	M			
Concept DBMS, Advantage of using DBMS, Data Models (object based logical models, record based logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging. Transaction rollback Restart recovery	Unit I: Introduc	tion to DBMS & ER Models 121	viarks			
logical models), DBMS users, Overall System Structure. ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. 12 Marks Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. 11 Marks Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging. Transaction rollback Restart recovery	Concept DBMS,	Advantage of using DBMS, Data Models (object ba	ased logi	ical mo	dels, rec	ord based
ER diagrams, generalization, specialization, aggregation. Database models - Network model, Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging. Transaction rollback Restart recovery	logical models), l	DBMS users, Overall System Structure.				
Hierarchical model, and Relational model. Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. 12 Marks Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. 11 Marks Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging. Transaction rollback. Restart recovery	ER diagrams, ge	neralization, specialization, aggregation. Database	e models	- Netv	vork mo	odel,
Unit II: Relational Model 12 Marks Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. 12 Marks Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. 11 Marks Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging. Transaction rollback Restart recovery	Hierarchical mod	el and Relational model				
Unit II: Relational Model12 MarksUnderlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization.12 MarksUnit III: Indexing and Relational Database Design12 MarksPrimary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form.Unit IV: Transactions and Concurrency Control12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling.Unit V: Recovery System12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging. Transaction rollback Restart recovery	incluicincui incu					
In the Relational ModelIn the Relational ModelUnderlying concepts, Structure, Study of Relational Languages (relational algebra, relationalcalculus, SQL), Storage and File Structure, File Organization.Unit III: Indexing and Relational Database Design12 MarksPrimary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing.Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form.Unit IV: Transactions and Concurrency Control12 MarksConcepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling.Unit V: Recovery System12 MarksLog based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging. Transaction rollback Restart recovery	Unit II. Dolotion	vol Model 1') Monka			
Underlying concepts, Structure, Study of Relational Languages (relational algebra, relational calculus, SQL), Storage and File Structure, File Organization. Unit III: Indexing and Relational Database Design 12 Marks Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging. Transaction rollback Restart recovery						
calculus, SQL), Storage and File Structure, File Organization.Unit III: Indexing and Relational Database Design12 MarksPrimary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing.11 MarksIntegrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form.Unit IV: Transactions and Concurrency Control12 MarksConcepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling.Unit V: Recovery System12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging, Transaction rollback Restart recovery	Underlying conce	epts, Structure, Study of Relational Languages (re	lational	algebra	, relatio	nal
Unit III: Indexing and Relational Database Design12 MarksPrimary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing.Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form.Unit IV: Transactions and Concurrency Control12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling.Unit V: Recovery System12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage, Logical undo logging, Transaction rollback, Restart recovery	calculus, SQL), S	storage and File Structure, File Organization.				
Unit III: Indexing and Relational Database Design12 MarksPrimary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form.Unit IV: Transactions and Concurrency Control12 MarksConcepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling.Unit V: Recovery System12 MarksLog based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging, Transaction rollback						
Primary and Secondary, B+ Tree Indexed Files, B - Tree Indexed Files, Static and Dynamic Hashing, Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging, Transaction rollback Restart recovery	Unit III: Indexir	ng and Relational Database Design 12	Marks			
Multiple Key Access, Grid File, Partitioned Hashing. Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging. Transaction rollback Restart recovery	Primary and Seco	ndary B+Tree Indexed Files B - Tree Indexed Fil	es Statio	and D	vnamic	Hashing
Multiple Key Access, Old File, Partitioned Hashing.Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form.Unit IV: Transactions and Concurrency Control12 MarksConcepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling.Unit V: Recovery System12 MarksLog based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage, Logical undo logging, Transaction rollback, Restart recovery	Multiple Key As	and y, D The Indexed Thes, D - The Indexed Th	cs, stati		ynanne	riasining,
Integrity constraints (domain constraints, referential, assertions, triggers, functional dependencies), Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form. Unit IV: Transactions and Concurrency Control 12 Marks Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging, Transaction rollback. Restart recovery	Multiple Key Ac	cess, Ghu File, Partitioneu Hashing.				
Normalization (using FDs, multivalued dependencies, join dependencies), Domain-key normal form.Unit IV: Transactions and Concurrency Control12 MarksConcepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability.Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, MultiversionSchemes, and Deadlock Handling.Unit V: Recovery System12 MarksLog based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging, Transaction rollback. Restart recovery	Integrity constrai	ints (domain constraints, referential, assertions, tri	iggers, fi	unction	al deper	idencies),
Unit IV: Transactions and Concurrency Control12 MarksConcepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability.Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, MultiversionSchemes, and Deadlock Handling.Unit V: Recovery SystemLog based recovery (deferred and immediate database modification), Checkpoints, Shadow paging,Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss ofnon - volatile storage. Logical undo logging, Transaction rollback. Restart recovery	Normalization (u	sing FDs, multivalued dependencies, join dependen	ncies), D	omain-	key nor	mal form.
Unit IV: Transactions and Concurrency Control12 MarksConcepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability.Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, MultiversionSchemes, and Deadlock Handling.12 MarksUnit V: Recovery System12 MarksLog based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging, Transaction rollback. Restart recovery						
Concepts, State, ACID properties, Serializability and Recoverability, Testing for Serializability. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging, Transaction rollback. Restart recovery	Unit IV: Transa	ctions and Concurrency Control	12 Mark	s		
Concepts, State, ACID properties, Senanzaonity and Recoverability, Testing for Senanzaonity. Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage, Logical undo logging, Transaction rollback, Restart recovery	Concents State	ACID properties Serializability and Recoverability	7 Testin	n for Se	rializah	ility
Lock - based Protocols, Timestamp Based Protocols, Validation Based Protocols, Multiversion Schemes, and Deadlock Handling. Unit V: Recovery System Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage, Logical undo logging, Transaction rollback, Restart recovery	Logic based Dree	togola Timesterin Deced Protocola Validation De	, I Count		11a112a0	niny.
Schemes, and Deadlock Handling. Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions, Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging, Transaction rollback. Restart recovery	LOCK - Dased Pro	tocols, Thestamp Based Protocols, Valuation Bas	seu Prou	ocois, N	/iuitiver	SIOII
Unit V: Recovery System 12 Marks Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions, Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging, Transaction rollback. Restart recovery	Schemes, and De	adlock Handling.				
Unit V: Recovery System12 MarksLog based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions , Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging, Transaction rollback. Restart recovery						
Log based recovery (deferred and immediate database modification), Checkpoints, Shadow paging, Recovery with concurrent with transactions, Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging, Transaction rollback. Restart recovery	Unit V: Recover	v System	12 Marl	ζS		
Recovery with concurrent with transactions, Buffer managements in recovery, Recovery from loss of non - volatile storage. Logical undo logging, Transaction rollback. Restart recovery	Log based recover	ry (deferred and immediate database modification)). Check	points	Shadow	paging.
non - volatile storage. Logical undo logging. Transaction rollback. Restart recovery	Recovery with con	current with transactions Buffer managements in	recover	v. Reco	verv fro	m loss of
	non - volatile stora	age. Logical undo logging. Transaction rollback R	estart rec	coverv		

Text Books:

- 1. Silberschatz A, Korth H.F., Sudersan S., '*Principles of Database Systems*', McGrawHill Publication, 5th Edition,2006.
- 2. Elmarsi R., NavatheS.B., '*Fundamentals of Database Systems*', Narosa publishing Company, 4th edition, 2007.

Reference Books:

1. UllmanJ.D ., WidomJ., 'A First Course in Database Systems'', 3rd Edition, Pearson, 2014. Bayross I., 'Database Concepts and Systems', Shroff Publications, 3rd Edition, 2011

Discussion:

Emphasis to SQL, ER Model, Normalization, transactions.

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:		Cr	edits				
MCA 206	Optimization Techniques and Queuing Theory	L: 2	T: 1	P: 1	Total: 4			
(Elective)								
Objective:		1						
This course is d	esigned with an objective to							
Discuss	different optimization techniques							
 Explain 	different quanting models							
	different queung models.							
Learning Outc	ome•							
On completion	of the course students will be able to:							
	liferent entimization matheds in prestical problems							
Apply 0	la relación de la construction de la construcción problemas.							
> Use and	apply various queuing models in real file problems	•						
> Write co	omputer programs on optimization methods.							
\succ Create of	own software on optimization techniques.							
	Total Marks: 100 (In Semester Evaluation –40 & End Semester Evaluation-60)							
Unit I: Basics of	of Linear Programming	1	12 Mark	S				
Introduction to	Operations Research and OR models ,Introduction	on to an	d Form	ulation	of Linear			
programming p	oroblem (LPP), Assumptions of LPP, Feasible	solution	n, Degen	nerate	and Non-			
degenerate solut	tion, Convex sets and properties.							
Unit II: Metho	ds for solving Linear Programming		12 Mark	S				
Graphical meth	od of solution of LPP, simplex method, revised si	mplex 1	nethod,	Primal	and Dual			
problem, sensiti	vity analysis.							
Unit III: Trans	portation and Assignment Problems		12 Marl	KS				
North-West Cor	ner Method, Least cost Method, Vogel's Method, N	1odi Me	thod, Hu	ıngariaı	n Methods			
etc.								
Unit IV: Intege	er and Dynamic Programming		12 Marl	KS				
Idea of Integer	and Dynamic Programming. Introduction and Meth	od of so	lution: C	domorv	's method			
for All-integer	programming problem and its algorithm Brand	h and F	Roundn	rethod	Dynamic			
programming ar	programming problem and its argorithm, Drane	ii una i	Jouna n	ietiiou.	Dynamie			
programming a	proden to solving ETT							
Unit V. Ouenir	ng Models	1	12 Mark	(C				
Eccentical feature	ig widdels			uð na traci	nationst and			
Essential feature	es of a queung system; Performance measures of	a queun	ig syster	n - ua				
steady-state; Ro	le of Poisson and Exponential distribution in Quei	ie Di	istributio	ons of a	irrivals, of			
inter arrivals tin	mes, of departures and of service times, and their	applica	tions in	specifi	c queuing			
models, classifi	cation of queuing models. Single server queue mod	els {	(M/M/1)	:(∞/I	FCFS)},			
{(M/M/1):(N/H	FCFS)} (Sans Derivations) and their applications M	Iulti-ser	ver queu	ing mo	dels (birth			
& death process	es).							

Text Books:

- 1. Lieberman F.J., "*Introduction to Operations Research*", 9thedition, McGraw hill education, 2012.
- 2. Verma A.P., "Introduction to Operations Research", 4th edition, SKK and Sons-New Delhi, 2010.

Reference Books:

- 1. Srinath L.S., "Linear Programming", 4th edition, East-West, New Delhi, 2010.
- 2. Gillett, B.G., "Introduction to Operation Research a computer oriented algorithmic approach", 5th edition,McGraw-Hill,2011.

Discussion:

Real life applications with programming approach

- Model Formulation
- Case study on Simplex and Graphical Method.
- Advantages of Vogel's and MODI method
- Case study on Queuing models

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course Code:	Title of the Paper:	Cre	dits			
MCA 207	Graph Theory	L:	2	T: 1	P: 1	Total:4
(Elective)						
Objective:		1				
The Course is design with	h an objective to:					
		1.1	. 1	_		
 Explain the Discuss diff. 	overview of graph and its application in pro	blem s	solvin	g.		
	erent application of graph in real world					
Learning outcomes:						
C						
On completion of this co	ourse students will able to:					
Apply differ	ent graph approach in practical problems.					
Formulate re	elated problems in the language of graphs					
write complete	iter programs and apply it in different problem	lems.				
	Part A: Theory (TH:203)					
	Total Marks: 100					
(In	semester evaluation 40 & End semester	evalu	ation	60)		
				/		
Unit 1: Introduction					Mar	ks: 15
Incidence and degree;	Handshaking Lemma; Isomorphism; Su	b-graj	phs a	nd Unio	n of gra	aphs;
Connectedness; Walks	, Paths and Circuits; Components and C	onnec	tedne	ess; Sho	ortest Pa	th
Algorithms, Eulerian g	raph, Eulerian necessary and sufficient	condi	tions;	Biparti	te grap	h,
maximum degree, ison	orphic graphs, isomorphism.					
Unit 2: PLANNER GR	AH				Mar	ks: 10
Combinatorial and geo	metric dual, kuratowski's graph, detecti	on of	plana	irity, Tr	nickness	5
and Crossings, Adjacei	icy; matrices and their properties, cut-se	ets and	a cut-	vertices	5.	
Unit 3. Matrix ranna	sentations of granh				Mai	·kc·10
Incidence: Adjacency:	matrices and their properties					N3.10
mendence, ragacency,	matrices and then properties.					
Unit 4: COLORING T	HECHNIOUES				Mar	·ks: 10
Chromatic number: Ch	romatic polynomial: k- chromatic graph	1.				
,						
Unit 5:Theoretical alg	orithms				Mai	rks: 15
Topological sort, minin	num spanning trees, DFS, BFS, shortes	t paths	s, maz	ximum	flow, F	ord-
Fulkerson method.		-				
Text Books:			1.0		a •	N DI II
I. Deo N., "Graph	n Ineory with Applications to Engineeri	ng an	a Coi	mputer	science	PHI

learning,New Edition,2014.
2 Robin J. W.,"*Introduction to Graph Theory*",Prentice Hall publication,5th edition, 2010.

Reference Books:

1. Douglas B. W., "Introduction to Graph Theory", Prentice Hall India Learning Private Limited, 2nd edition, 2015.

2. Harary F., "Graph Theory", Narosa publishing house, 2013.

Practical : (30 END SEM / 20 IN SEM)

Discussion:

Emphasis should be given to the following topics 1. Theoretical algorithms

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be in line with the content of the paper)

Course No:	Title of the Paper:	Credits			
MCA 208	Fuzzy Sets and Applications	L: 2	T: 1	P: 1	Total: 4
(Elective)					
Objective:					
This course is des	signed with an objective to				
Recogniz	the basic knowledge of fuzzy sets and fuzzy l	ogic.			
Gain kno	owledge in fuzzy relations.				
Be famili	iar with the concept of fuzzy numbers and arithr	netic opera	ations.		
Looming Outoo	mat				
On completion of	f the course students will be able to:				
 Illustrate 	basic fuzzy system modeling methods and know	vledge of	fuzzy inf	ormati	n
processir	or of the system modeling methods and know	vicuge of	Iuzzy III	orman	511
processii	-5-				
	Total Marks: 100				
	(In Semester Evaluation -40 & End Semeste	r Evaluatio	on-60)		
Unit I: Fuzzy Se		1	0 Marks	8	
Basic definition,	level sets, convex fuzzy sets, basic operations o	n fuzzy set	ts, types	of fuzz	y sets.
Unit II. Extensio	on principle and application		10 Marl	76	
Zadeb extention	principle image and inverse image of fuzzy set	s fuzzy ni	imbers (element	ts of fuzzy
arithmetic	principle, image and inverse image of fuzzy set	s, iuzzy in	unioers, v		is of fuzzy
ur turnette.					
Unit III: Fuzzy]	Relations	1	l0 Mark	s	
Fuzzy relations of	n fuzzy sets, composition of fuzzy relations, min	-max com	position	and its	properties,
fuzzy equivalence	e relation, fuzzy graph.		•		
Unit IV: Fuzzy I	Logic	1	0 Marks	5	
Fuzzy logic, Fuz	zzy propositions, fuzzy quantifiers, linguistic v	ariable, ir	nference	from c	onditional
fuzzy proposition	ns, compositional rule of inference, applications				
Unit V: Fuzzy C	control	1	0 Marks	5	
Introduction to	fuzzy controllers, fuzzy rule base, fuzzy	inference	ce engir	ne, fuz	zification,
defuzzification a	nd various defuzzification methods, fuzzy nuera	al network	, autome	eta and	dynamical
systems.					
Unit VI. Dooisto	n making in fuzzy anvironment		10 Mar	Iza	
Unit vi: Decisio	in making in juzzy environment	onitonio J-	inion and	KS	multists ==
decision malving	furger realizing methods, furger linear programmer	ing on and	usion m	akilig,	munistage
decision making,	iuzzy ranking methods, iuzzy inear programm	ing, applic	auons.		
Text Books:		_			
1. Klir, G.J	and Yuan, B. "Fuzzy Sets and Fuzzy Logic: Th	eory and A	Applicati	ons", P	rentice
Hall of I	ndia, New Delhi, 1997.				

2. Zimmermann, H. J., "Fuzzy set theory and its Applications", Allied publishers Ltd., New Delhi, 1991.

Reference Books:

- 1. Dubois, D. and Prade, H. "Fuzzy sets and systems: theory and applications", Academic Press, New York, 1980
- 2. Kandel, A. "*Fuzzy mathematical techniques with applications*", Addison-Wesley, Reading, Mass, 1986
- 3. Kaufmann, A. and Gupta, M. M. "*Introduction to fuzzy arithmetic: theory and applications*", Van Nostrand Reinhold, New York, 1985.
- 4. Kosko, B. "Fuzzy Thinking: the new science of fuzzy logic", Flamingo, 1994.

Discussion

Practical application oriented.

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:	Credits				
MCA 209	Image Processing and Pattern Classification	L:2	T:1	P:1	Total: 4	
(Elective)						
Objective:						
This course is design	ned with an objective to					
Explain the	basic concepts of Image processing and Pattern Cl	assifica	tion.			
Explain diff	erent algorithms and techniques in Pattern recognit	ion.				
Learning Outcome	:					
On completion of th	e course, students will be able to:					
Understand	the basic concepts of image processing and pattern	classif	ication.			
Apply the in	nage processing techniques in different problems.					
Apply Patte	rn Recognition techniques in different problems.					
	Total Marks: 100					
	(In Semester Evaluation –40 & End Semester E	valuatio	on –60)			
Unit I: Digital Ima	ge Fundamentals			10Marl	ks	
Digital Image repres	sentation, Fundamental steps in Image processing,	Elemen	nts of dig	gital Ima	ge	
processing systems,	Types of Image, Image acquisition, Sampling and	Quanti	zation.			
Unit II: Image Tra	nsforms and Image Enhancement	1 (1 - 1 -		15 Ma	arks	
Fourier Transform,	Discrete Cosine Transform and Haar transforms and	anhono	properti	les.		
	t in spatial domain, Histogram, Frequency domain	ennanc	ement.			
Unit-III: Image Co	mpression and Segmentation			10 Ma	rks	
Image Compression	models, Image Compression Measures, Huffman	Coding		10 1010		
Introduction to Imag	ge Segmentation, Detection of discontinuities, Edg	e linkin	g, Three	sholding.		
Unit-IV: Pattern R	ecognition Fundamentals			10 Mar	·ks	
Principles of pattern	recognition, Fundamental steps in Pattern Recogn	ition.	6 5			
Clustering vs. Class	ification, Vector space, Eigen value and Eigen Vec	ctor, Ty	pes of E	rrors, Ba	ayes	
Normalization	nai Distribution, Dataset, Training set, Test set, Sta	andardi	zation a	na		
Normanzation.						
Unit V: Pattern Re	cognition: Methods			15 Marl	ks	
Feature selection: H	Branch and Bound algorithm, Sequential Forward/	Backwa	ard Sele	ction alg	orithm,	
Feature Selection C	riteria Function: Interclass Distance Based.			C	, <u>,</u>	
Linear Discriminan	t Function, Non-Linear decision boundaries, KN	NN cla	ssifier,	PCA, Fi	sher's LDA,	
Single layer Percept	ron, Multi-Layer perceptron.					
Introduction to Deep learning.						
Text Books:						
1. R.C. Gonza	lez & R. /E. Woods, Digital Image Processing: Ad	dison -	Wesley	Pub. coi	mp	
2. R.O. Duda.	P.E. Hart and D.G. Stork." Pattern Classification".	John W	Vilev.20	01	I	
3. Devi V.S. M	3 Devi V S Murty M N "Pattren Recognition An Introduction" Universities Press 2011					
Reference Books:		,	1			
1. Ralph Gonz	zalez, Richard Woods, Steven Eddins, Digital Imag	ge Proc	essing U	Jsing		
MATLAB.	McGraw Hill Education (India) Private Limited: 2	edition	n (8 June	e 2010)		
2. C.M. Bisho	p," Pattren Recognition and Machine Learning", S	pringer	, 2006	,		

2. C.M. Bishop," Pattren Recognition and Machine Learning", Springer, 2006

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No: MCA 210	<i>Title of the Paper:</i> Computer Graphics And Multimedia	Audit Course
Objective:		

The Course is design with an objective to:

- > Discuss different graphics packages, demonstrate functionality of display devices.
- Explain all aspects of computer graphics including hardware, software and applications.
- Explain how an animation is created.
- ▶ Write program functions in C to implement different graphics primitives.

Learning outcomes:

On completion of this course students will able to:

- > Develop graphical algorithm to design different graphical pattern
- Design simple graphical pattern using C
- Resolve programming problem using graphics packages.

Total Marks: 100 (In semester evaluation 40& End semester evaluation 60)

Unit I:Display Devices

Different display devices, Video Controller, Digital frame buffer, Plasma panel displays, Liquid Crystal Display(LCD), Color-display techniques (Shadow mask and penetration CRT, , Line Drawing Algorithm, Circle drawing Algorithm.

Unit II: Display Description and Interactive Graphics

Different Screen co-ordinates, Graphical function, The view algorithms; Clipping Algorithm, Two dimensional transformation, Techniques and Applications, Definition of image, filtering, image processing, Pointing and positioning devices.

Unit III: 3 -D Graphics

Wire-frame perspective display, Parallel Projection, Perspective depth, Projective transformations, Surface Rendering, Bezier Curves and its properties, B-Splines Curves, Constructive solids –geometry methods, Hidden line and surface elimination, Color Models.

Unit IV: Multimedia

Introduction to multimedia, Multimedia applications, Basics of Animation, Music and sounds, Audio basic Concepts, Digital and Analog basic concepts. MIDI concept, different File format (image, audio, video), Image Compression, Sound Compression, Video Compression.

20 Marks

15 Marks

15 Marks

Text Books:

- 2. HearnD., Baker M.P., "Computer Graphics", PHI, 2nd edition 2011.
- 3. Bhattacharya S, "Computer Graphics", Oxford higher education, 1st edition 2018.

Reference Books:

1. Pakhira K, "Computer Graphics Multimedia & Animation"2ndedition,Phi Learning Pvt. ltd 2. Mukherjee D.P., "Fundamentals Of Computer Graphics And Multimedia" Phi Learning, 1st Edition,

Discussion

Algorithms implementation using C (Lines, rectangles, circles, Ellipses, Drawing Arcs, 2-D transformation, Text animation, Simple 2D animation)

Course No:	Title of the Paper:		C	redits:				
MCA 301	Design And Analysis of Algorithms	L: 2	T: 1	P: 1	Total: 4			
Objective:								
The course is des Explain th Create str Design a	 The course is designed with an objective to Explain the concepts of algorithms. Create strong logic and problem solving approach. Design a better algorithm before programming. 							
Learning Outcome:								
 On completion of the course, students will be able to: Analyze the efficiency of the algorithms, Design and analyze algorithms before its implementation 								
Total Marks: 100 (In Semester Evaluation –40 & End Semester Evaluation-60)								
Unit I: Introduc Order notations, 1	tion to algorithms mathematical induction, recurrence relat	ions.	12 Marl	KS .				
Unit II: Algorith Greedy algorithm Amortized Analy	nm design techniques ns, divide-and-conquer algorithms, dyna rsis.	mic prograr	20 Mar nming, op	ks timizatior	ı problems,			
Unit III: NP-con Classes P and NF	npleteness P, reduction, NP-completeness, examples	s of NP-con	12 Mar	ks blems.				
Unit IV: Approximation algorithms 8 Marks Introduction to Approximation algorithms, TSP, PTAS and FPTAS.								
Unit V:Randomized algorithms8 MarksIntroduction to Randomized algorithms, Monte Carlo and Las Vegas algorithms.								
Text Books:								
 Charles E 3rd Edition Sridhar S 	. L., Thomas H. C., Ronald L. R., Cliffo on, PHI Learning Pvt. Ltd., 2009 ., "Design and Analysis of Algorithms",	rd S., " <i>Intro</i> Oxford Uni	oduction to	<i>o Algorith</i> ess, 1 st Ec	<i>ms</i> ", lition, 2015.			

Mohan, Chandra I., "Design and Analysis of Algorithms", PHI Learning Pvt. Ltd, 2nd edition, 2010.

Reference Books:

- 1. Aho, A. V., Hopcroft J.E., Ullman, J. D., '*The Design and Analysis of Computer Algorithms*,' Addision Wesly.
- 2. Richard, J, "Algorithms", 1st Edition, Pearson Education, 1994.

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course Code:	Title of the Paper:			Credits	
MCA 302	Data Mining and Machine Learning	L:2	T:1	P:1	Total: 4
Objective:					

This course is designed with an objective to

- > Determine the overall architecture of a data warehouse and techniques and methods for data gathering and data pre-processing using OLAP tools.
- > Discuss different data mining models and techniques using MATLAB.

Learning Outcomes:

On completion of this course, the students will be able to

- > Compare various data mining techniques, methods in integrating and interpreting different data sets
- Obtain improved mechanism for effective and efficient data analysis.
- Discuss the role of data warehousing and enterprise intelligence in industry and government.

Total Marks: 100

(In Semester Evaluation -40 & End Semester Evaluation-60)

Unit I: Data Mining

Concept of data mining- learning- data warehouse and data mining. KDD and Data Mining. The Knowledge Discovery processes its different stages. Data Mining Techniques - Verification model, Discovery model. Issues and challenges in Data mining.

Unit II: Classification

Bayes decision rule, error probability, normal distribution, linear discriminant function, Non-Linear decision boundaries, KNN classifier, Naïve base classifier, Single laver Perceptron, Multi-Laver perceptron. Fundamental concept of Association rule, Classification rule, Learning, Neural networks, (Example with practical case studies in Python).

Unit III: Clusternig

Basics of clustering, similarity dissimilarity measures, clusterning criteria, distance functions, K- means algorithm, single linkage and complete linkage algorithm, K-medoids, K mean algorithm, CLARA, CLARANS, DBSCAN. Genetic algorithm, Rough set techniques. Support vector mechanism, Web mining, Text mining, Sequence mining, Spatial Data mining,

(Example with practical case studies in Python).

Unit IV: Data Warehousing

Concept of data warehousing its evolution. Scope of data warehouse type of data and their use, metadata & their types. Data warehouse schema. Fact data, Dimension data, Partitioning data, data marting. Database schemas - star, star flake, snowflake schemas, and multidimensional schemes, Multidimensional Data model, Data cube, OLAP operations.

15 Marks

20 Marks

15 Marks

Text Books:

- 1. Han J., Kamber M., "Data Mining: Concepts and Techniques", Morgan Kaufmann, India, 3rd edition, 2011,.
- 2. Vipin Kumar, Michael Steinbach, Pang-Ning Tan, Anuj Karpatne, "*Introduction to Data Mining*", 2nd edition January, 2018, Pearson Education India.

Reference Books:

- 1. Han M, and Smyth, "Principles of Data Mining", PHI, India, 2nd edition, 2011.
- 2. Robert Layton, "Learning Data Mining with Python", Second Edition, Packt Publishing, 2017.

Discussion:

- OLAP techniques
- Clustering and Classification
- Association Rule Mining

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

MCA 303 Operating Systems L: 2 T: 1 P: 1 Tota						Total: 4			
Object	tive:								
This co	This course is designed with an objective to								
\succ	Explain the concepts and internal working of various operating systems.								
\triangleright	> Illustrate the concepts of processes, resource control (concurrency etc.), physical and virtual								
	memory	, scheduling, I/O and files							
\triangleright	Demons	strate working of different operati	ng system.						
Learni	ing Outco	ome:							
On con	npletion of	of the course, students will be able	e to:						
\succ	Analyze	the concepts, structure and desig	gn of operating Sys	tems.					
\triangleright	Explain	operating system design and its i	mpact on application	on syste	m desig	n and			
	perform	ance.							
	Demons	strate competence in recognizing	and using operatin	g systen	nfeature	s.			
	Work of	n different OS environment.							
		Total M	Iarks: 100						
		(In Semester Evaluation -40	& End Semester F	valuatio	n-60)				
		(In Semester Evaluation -40)		valuatio	II-00)				
Unit I:	Introdu	ction	12 Mar	·ks					
Batch 1	processin	g, multiprogramming, time-sharir	ng, distributed syst	em, Fun	ctions, c	compon	ents and		
structu	re of an o	perating system.				-			
Unit II	l: Process	s Management	12 Ma	rks					
Suppor	rt for conc	current processes - Shared data, C	ritical sections, Mu	itual exc	lusion, I	Mutual	exclusion,		
busy fo	orm of wa	aiting, lock and unlock primitive	s, semaphore, Syn	chroniza	ation, bl	ock and	l wakeup,		
Inter p	rocess coi	nmunication, message passing me	echanism, Multithr	eading I	Models,	Threadi	ing issues,		
Pthread	ds, Proc	ess states, interrupt mechanis	ms, scheduling	algorith	ms, im	plemen	tation of		
concur	rency Prin	mitives. System deadlock - Preve	ntion, detection an	davoida	nce.				
Unit II	II: Memo	ory Management	12 Ma	arks					
Contig	uous and	l non - contiguous memory al	location; Swappir	ng Virtu	al men	nory pa	iging and		
Segme	ntation -p	age replacement and space alloca	ation policies.	-		- 1			
Unit D	V• Innut/	Output and File Systems	12 M	arks					
υmtI	•• IIIpul/			CALLING					

Title of the Paper:

Credits

Course No:

I/O Management I / O Software goals and structure, Device drivers, Terminal handling, Block and character devices. System Structure, File management strategies, tradeoffs, Directory structures, File system protection, Security, Integrity, Device independence.

12 Marks

Unit V: Distributed Operating System

Concepts of Distributed Operating System - UNIX / LINUX.

57

Text Books:

- 1. Stallings W., "Operating systems" 2nd edition, Prentice Hall, 1995.
- 2. Silberschatz A., Galvin P.B, "Operating System Concepts" 5th edition, Addison-Wesley Publishing Company, 1998.
- 3. Deitel H.M., "Operating System" 2nd edition, Addison-Wesley Publishing Company1990.

Reference Books:

- 1. Tanenbaum A.S., "*Modern Operating Systems*", 2ndedition, Prentice Hall of India, New Delhi, 2002.
- 2. Chandra P., Bhatt P., "An Introduction to Operating Systems Concept", Prentice Hall of India.

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:		Credits				
MCA 304	Software Engineering	L: 2	T: 1	P: 1	Total: 4		
 Objective: The course is designed with an objective to Illustrate software process models such as the waterfall and evolutionary models. Discuss the role of project management including planning, scheduling, risk management, etc. Test software using testing approaches such as unit testing and integration testing. 							
 Design soft Create the soft Write prog Test softward 	 Design software system using SDLC models. Create the SRS document. Write programs using appropriate rules. Test software using testing approaches such as unit testing and integrationtesting. 						
	Total Marks: 100 (In Semester Evaluation –40 & End Semester Ev	aluatior	n —60)				
Unit I: Software E Software developm Planning of a softw management, Conf	Engineering & Software Project Management aent and life cycle, project size and its categories. are project, project - control and project team stan iguration management, Software cost estimation an	idards, S nd evalu	12 M Schedulin ation te	l arks ng, Risk chniques	S.		
Unit II: Software requirements & Software Design12 MarksDifferent methodologies and techniques of Software requirement analysis, Various design conceptsand notations, Modern design techniques, high level design and detailed design, Structured design, object -oriented design.							
Unit III: Coding, Verification, Validation and Testing12 MarksStandards and guidelines for coding, coding walkthrough, code inspection.Documentation and implementation procedures, Performance of software systems, software metricsand models, Documentation of project systems, manuals and implementation.Structural Testing, Unit Testing of a test suite etc.							
Unit IV: Software Definition and cond availability and mo	e Reliability: cepts of software reliability, Software errors, faults dels, use of database as a case tool, Software Qual	s, repair ity Cont	12 M and ava trol and	arks ilability Manage	- re- ment.		
Unit V: Software Categories of ma Maintenance proces of Maintenance cos	Maintenance: intenance, Problems during maintenance, solu ss, Maintenance models, Reverse Engineering Soft ts.	tion to ware Re	12 Ma mainte e-Engine	rks mance j eering, E	problems, Estimation		

Text Books:

- 1. Mall R., 'Fundamentals of Software Engineering', Prentice-Hall of India, 4th edition, 2014.
- 2. JaloteP., 'An Integrated Approach to Software Engineering', Narosa Publishing House, 3rd edition, 2014..

Reference Books:

- 1. Pressman R.S., '*Software Engineering: A Practitioner's Approach*', McGraw Hill Publication, 8th edition,2014.
- 2. James K.L., "Software Engineering", PHI Learning, 2nd Edition.

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper) Course No: Title of the Paper: Credits Web Technology **MCA 305** L:2 T:1 Total: 4 **P**:1

Objective:

This course is designed with an objective to

- Discuss about various concepts related to internet and web.
- Explain about different web based technologies.

Learning Outcome:

On completion of the course, students will be able to:

- ➢ Write HTML, CSS and scripting languages.
- Use and apply various web programming languages.
- Create websites.
- Handle and maintain web based projects.

Total Marks: 100 (In Semester Evaluation -40 & End Semester Evaluation -60)

Unit I: Internet Basics.

Network Connectivity Types- dial up- PPP, SLIP, leased, VSAT, ISP, HTTP, TCP/IP, IP Address, Domain Names, DNS, Services-email, WWW, URL, ARP, RARP, WWW, Search Engine, Concept of Client -Server computing, Thin Client vs. Flat Client, Middle ware, Client Pull, Server Push.

Unit II: Web Client

Web Architecture, Browsers, Basic features & Functions, Static, dynamic, Active pages Client- side Inclusive- Scripts, VB Scripts, Java Scripts, Activex, ASP, Plugins, Case Study- IE, Firefox .

Unit III: File Server, Mail Server, Web Server

FTP, Telnet, SMTP, MIME etc. Web Server : Stateful vs. Stateless Servers, Web Server Architecture, Basic features & Functions, URL, Server side inclusive - CGI, API, PERL, JSP, PHP, ASP. NET, Web database Connectivity- JDBC, ODBC, Case Study- IIS, Apache- Tomcat.

Unit IV: Web Application Development

HTML,XML, DHTML with DTD concept <head> & <body> section, able, form, Frame, hyperlinks, CSS Web Page Design using HTML authoring tools- FrontPage/ Dream weaver, Visual Web Developer

Text Books:

- 1. Roy U.K., "Web Technologies", Oxford Higher Education, 9th edition 2015.
- 2. Godbole A., "Web Technologies", Tata McGraw Hill, 4th edition 2012.

Reference Books:

- Bates C., "Web Programming", Willey India Ltd, 3rd edition 2012. 1.
- Jackson C., "Web Technologies-A computer science perspective", Pearson India, 4th edition 2010. 2.

15 Marks

15 Marks

15 Marks

Discussion:

- Java Script, CSS, AJAX
- > PHP,JSP and ASP.net
- Visual Web Development tools.

Web based Project.

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30)

(Practical will be as per the content of the paper)

Course No:	Title of the Paper:	Credits						
MCA 306	Introduction to Data Science	L: 2	T:1	P:1	Total: 4			
(Elective) Objective:								
This course is d	esigned with an objective to							
 Develop 	practical Data analysis skills							
 Develop 	Develop fundamental knowledge of concepts underlying data science projects.							
Develop	Develop practical skills in modern analytics							
Give hands on experience with real world data analysis								
Learning Outc	ome:							
On completion	of the course, students should have following	g compete	ences:					
Ability	to reflect developed methods of activity i.e.	mathema	tical mode	els.				
Ability	to propose a model to invest and test method	ds and too	ls of profe	ession	al activity.			
Capabil	ity to solve real world data analytics probler	ns.						
Capabil	ity of developing new research methods to s	olve data	analytics	proble	ems.			
	Total Marks: 1	100						
	(In Semester Evaluation –40 & End	Semester	Evaluatio	on-60)				
Unit I: Introdu	ction to Data Science			12 Ma	irks			
Basic concepts	of data, types of data, data collecting method	ls, proble	m solving	in Da	ta Science, Data			
Science compor	ents, Introduction to Python.							
Unit II. Evnlor	atory Data analysis			12 Ma	m lza			
Analytics proble	and y Data analysis om solving Exploratory Data analysis. Infer	ential Sta	tistics dat	12 IVIa ta visu	alization in Python			
r mary res proor	Sil solving, Exploratory Data analysis, mer	ennur Bru	usues, au	u vibu	unzution in Fython			
Unit III: Proba	bility and Regression			12 Ma	arks			
Basics of proba	bility, Conditional probability, Bayes theore	m, Basics	of Correl	lation,	Scattered diagram,			
Simple linear re	gression, Multiple linear regression, Naïve l	bayes and	logistic r	egress	ion			
Unit IV: Classi	fication and Clustering			12 M	arks			
KNN, Decision	tree, SVM.							
Unit V: Ensemble method				12 M	arks			
Kandom forest								
Books Recomm	nended:							
1. A. B. Dow	ney, Think Python, 2e: How to Think Like a	a Comput	er Scientis	st, O'R	eilly, 2015.			
2. Z. Shaw, L	EARN PYTHON 3 THE HARD WAY, Ad	dison-We	esley, 201	7.				

3. Arockia Mary P, Problem Solving and Python Programming, Shanlax Publications, 2021.

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:		Credits					
MCA 307	Cloud Computing	L:2	L:2 T:1 P:1 Total: 4					
(Elective)								
Objective:	Objective:							
This course is designed with an objective to								
To introduce the broad perceptive of cloud architecture and model								
To understand the concept of Virtualization.								
To be familiar with the lead players in cloud.								
To understand the features of cloud simulator								
To ap	y different cloud programming model as per ne	eed.						
To be	ble to set up a private cloud.							
To un	erstand the design of cloud Services.							
To lea	n to design the trusted cloud Computing system	ı						
 On completion of the course, students will be able to: Compare the strengths and limitations of cloud computing Identify the architecture, infrastructure and delivery models of cloud computing Apply suitable virtualization concept. Choose the appropriate cloud player. Choose the appropriate Programming Models and approach. Address the core issues of cloud computing such as security, privacy and interoperability Design Cloud Services Set a private cloud 					rability			
	Total Marks: 100 (In Semester Evaluation –40 & End Semes	ster Evaluat	tion60))				
Unit I: Cloud Technologies NIST Cloud C Cloud models Service manag	Architecture And Model or Network-Based System – System Models for omputing Reference Architecture. Cloud Mode IaaS, PaaS, SaaS) – Public vs Private Cloud - oment – Computing on demand.	12 or Distribut ls: - Charac -Cloud Sol	Marks and (cteristics utions -	Cloud C – Clouc Cloud e	omputing – 1 Services – cosystem –			
Unit II: Virtualization12 MarksBasics of Virtualization - Types of Virtualization - Implementation Levels of Virtualization- Virtualization Structures - Tools and Mechanisms - Virtualization of CPU, Memory, I/O Devices - Virtual Clusters and Resource management – Virtualization for Data-center Automation.								

Unit III: Cloud Infrastructure

Architectural Design of Compute and Storage Clouds – Layered Cloud Architecture Development – Design Challenges - Inter Cloud Resource Management – Resource Provisioning and Platform Deployment – Global Exchange of Cloud Resources.

Unit IV : Programming Model

Parallel and Distributed Programming Paradigms - MapReduce, Twister and Iterative MapReduce - Hadoop Library from Apache - Mapping Applications - Programming Support - Google App Engine,

Amazon AWS - Cloud Software Environments -Eucalyptus, Open Nebula, OpenStack, Aneka, CloudSim

Unit V : Security In The Cloud

12 Marks

Security Overview - Cloud Security Challenges and Risks - Software-as-a-Service Security -Security Governance - Risk Management - Security Monitoring - Security Architecture Design -Data Security - Application Security - Virtual Machine Security - Identity Management and Access Control – Autonomic Security.

Text Books:

- 1. Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 2. John W.Rittinghouse and James F.Ransome, "Cloud Computing: Implementation, Management, and Security", CRC Press, 2010.

Reference Books:

- 1. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A Practical Approach", TMH, 2009.
- 2. Kumar Saurabh, "Cloud Computing insights into New-Era Infrastructure", Wiley India,2011

Practical

Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will be as per the content of the paper)

Course No:	Title of the Paper:	Credits					
MCA 308	Cryptography and Internet security	L:2 T:1 P:1 Total:					
(Elective)							
Objective:			•	1			
This course is de	esigned with an objective to						
Discuss	and explain different online security tools to the security tools	tudents.					
Learning Oute	ome:						
On completion of	of the course, students will be able to:						
 Exposure 	re to Internet security.						
	Total Marks: 100						
	(In Semester Evaluation –40 & End Semester	Evaluat	tion60))			
I]nit I∙				12 M	arks		
Introduction to C	ryptography, Mathematical Foundation of Cryptog	graphy S	Secret K	ev.	ai ns		
Unit II:				12 M	larks		
Cryptosystem : S	Stream and Block Ciphers; Pseudo-random patte	ern gene	erators,	LFSR b	ased stream		
Its Security, other	r Block Ciphers; Differential Cryptanalysis, Attacl	ks on B	lock Cip	hers.	as, des air		
			1				
Unit III:			****	12 M	Iarks		
One-Way Hash I hash functions	Functions and Data Integrity: Shefru, MD4, MD3	o, sha	, HAVA	L; Cryp	otanalysis of		
nash functions.							
Unit IV:				12 M	[arks		
Public Key Crypt	tography: Mathematical Foundation, RSA, Securit	y Analy	sis of R	SA			
Key Establishme	ent Protocols: Symmetric key based and Asymi	netric	Key bas	sed prot	ocols,		
NERDERUS, ER	E, DH-EKE, FAKE, Secret Sharing						
Unit V:				12 N	Iarks		
Digital Signature	Schemes: RSA and other related signature scheme	es, Poss	sible Att	acks, DS	SA and other		
related signature	schemes.						
Tout Doolu							
1. M. Subramania	an. Network Management, Principles and Practice.	Prentic	e Hall: (2 editior	(May 17.		
2012)	,				(
2. C. Kaufman, R. Perlman, Network Security: Private Communication in a Public World, Prentice							
Hall; 2 edition (M	fay 2, 2002)						

Books/References:

1. William Stallings, Cryptography and Network Security: Principles and Practice, Pearson; 6 edition (March 16, 2013)

2. Manezes, Oorschot and Vanstone: Handbook of Applied Cryptography, CRC Press; 1 edition (October 16, 1996)

Practical Total Marks: 50 (In Semester Evaluation –20 & End Semester Evaluation-30) (Practical will as per content of the paper)

Course No:	Course Name:	Credits			
MCA 309	Python Programming	L: 2	T: 1	P: 1	Total: 4
(Elective)					

Objective:

- > To learn basic construct and syntax of Python programming.
- > To learn how to design and program Python based applications.
- > To define the structure and components of a Python program.
- > To learn how to write loops and decision statements in Python.
- > To learn concept of string and string manipulation.
- > To learn how to use List, Tuples and Dictionary.
- To learn how to write functions and pass arguments in Python, build package learn the concept of modules for reusability.
- > To learn concept of exception handling in Python and its implementation.

Learning Outcome:

On completion of the course, students will be able to:

- > Solve problems through Python programs.
- > Develop advance Python program to solve real life problems.

Total Marks: 100

(In Semester Evaluation -40& End Semester Evaluation -60)

Unit I: Introduction to Python:

Structure of a Python Program, Elements of Python, Python Interpreter, Using Python as calculator, Python shell, Indentation. Atoms, Identifiers and keywords, Literals, Strings and Operators.

Unit II: Conditional Statements, Looping and String Manipulation: 12 Marks

Branching, Looping, Conditional Statement, Exit function, Difference between break, continue and pass. Understanding string, Accessing Strings, Basic Operations, String slices, Function and Methods.

Unit III: List, Tuples and Dictionary:

Introduction to list, Accessing list, list operations, Working with lists, Function and Methods, Introduction to tuple, Accessing tuples, Operations, Working, Functions and Methods, Introduction to dictionaries, Accessing values in dictionaries, Working with dictionaries, Properties, Functions.

Unit IV: Python Functions and Modules:

Defining a function, Calling a function, Types of functions, Function Arguments, Anonymous functions, Global and local variables, Organizing python codes using functions, Organizing python projects into modules, Importing own module as well as external modules, Understanding Packages, modules and external packages.

Unit V:

Input-Output and Exception Handling: Printing on screen, Reading data from keyboard, Opening and closing file, Reading and writing files, Functions, Introduction to Exception, Exception Handling, Except clause, Try? Finally clause, User Defined Exceptions.

TEXT BOOKS:

- 1. Arockia Mary P, Problem Solving and Python Programming, Shanlax Publications, 2021.
- 2. Z. Shaw, LEARN PYTHON 3 THE HARD WAY, Addison-Wesley, 2017.

REFERENCES:

- 1. Python Tutorial/Documentation www.python.or 2015.
- 2. Python Tutorial https://www.kaggle.com/learn/python

Practical Total Marks: 50

(In Semester Evaluation –20 & End Semester Evaluation-30)

(Practical will as per content of the paper)

12 Marks

12 Marks

12 Marks

Course No:	Title of the Paper:	Audit Course
MCA 310	Artificial Intelligence	

Objective:

This course is designed with an objective to

- Introduce the basic techniques of artificial intelligence: problem solving, heuristic search, knowledge representation, logic system and inference
- > Provide insight into the artificial intelligence, neural networks and applications.
- Introduce students about this critically important technology to increase their understanding of its implications, to pique their curiosity about the remarkable developments that are taking place and help to familiarize students with many faces of Artificial Intelligence and Neural Networks.

Learning Outcome:

At the end of the course, students will be able to:

- Survey and design some practical artificial intelligence applications in any information system domain.
- > Solve some natural problems in a systematic way to provide effective and optimal solutions.
- Identify core ideas, techniques, and applications that characterize the emerging fields of Artificial Intelligence.

Total Marks: 100

(In Semester Evaluation –40 & End Semester Evaluation-60)

Unit I: Introduction to Artificial Intelligence

5 Marks

Natural and Artificial Intelligence, Definitions of AI, Nature of AI Solutions, Testing Intelligence, AI Techniques, Testing Intelligence (Turing Test, Chinese Room Test), Data Pyramid, Computer Based Information Systems in the Pyramid, AI Applications Areas (Mundane Tasks, formal Tasks and Expert Tasks).

Unit II: Problem Solving, Search and Heuristic Search Techniques 15 Marks

Problems and Problem Spaces, Problem Characteristics, Production Systems, Control Strategies (Forward Chaining, Backward Chaining), Exhaustive Searches and Blind Methods (Depth First Search, Breadth First Search).

Heuristic Search Techniques, Generate and Test, Hill Climbing, Branch and Bound technique, Best First Search and A* Algorithm, Problem Reduction, AND / OR graphs, AO* Algorithm, Constraint Satisfaction Problems, Means Ends Analysis.

Unit III: Knowledge Representation and Knowledge Acquisition12 MarksKnowledge Representation (KR): Formal KR (First Order Predicate Logic), Procedural KR (Rule,
Semantic Nets, Frames, Conceptual Dependency, Scripts, and Semantic Web), KR Issues and
Limitations.

Using Predicate logic: Syntax and Semantics for FOPL, Properties of Wff's, Conversion to clausal form, Horn's clauses, Unification, Resolution Principles, Deduction Rules

Knowledge Based Systems (KBS) Architecture, Knowledge Acquisition (KA): Techniques, Role of Knowledge Engineer (KE), Knowledge Sharing and Dealing with Multiple Experts, KA Issues and Limitations.

Unit IV: Probabilistic Reasoning and Uncertainties

Crisp and Fuzzy Logic, Fuzzy Membership Functions, Fuzzy Rule Based Systems, Probability and Bayes' Theorem, Certainty factors, Dempster-Shafer theory, Non Monotonic Reasoning and Truth Monitoring Systems.

Unit V: Artificial Neural Networks and Expert Systems 20 Marks

Introduction to Neural Computing and Artificial Neural Network (ANN), Fundamental Concepts: Biological Neuron, Artificial Neuron, Activation Function and Output Functions, Introduction to ANN Architectures, Applications of ANN and Expert Systems.

Neural Network Architectures: Hopfield Model, Parallel Relaxation; Perceptron, Lineraly Separable Problems, and Fixed Increment Perceptron; Learning: Multi-layer Perceptron, Non-Lineraly Separable Problems, and Back Propagation Learning; Self Organizing Networks: Kohonens Networks; Recurrent Networks.

Objectives of Learning, Hebb's Rule, Delta Rule, Supervised Learning, Unsupervised Learning.

Text Books:

- 1. Rich E., Knight K., Nair S.B., "Artificial Intelligence", Tata McGraw Hill Education, 3rd Edition, 2008.
- 2. Patterson D.W., "Introduction to Artificial Intelligence and Expert Systems", Prentice Hall of India, 1990.
- 3. Russell S., Norvig P., "Artificial Intelligence: A Modern Approach", Pearson Education, 3rd Edition, 2015.
- Sivanandam S. N., Deepa S. N., "Principles of Soft Computing", Wiley India, 2nd Edition 4. 2011

Reference Books:

1. Nilsson N.J., "Principles of Artificial Intelligence", Narosa Publishing House, New Delhi, Reprint 2002.

2. Jackson P., "Introduction to Expert Systems", Addison Wesley Publishing Company, 1998

Discussion:

Real life applications with programming approach.

Course	Title of the Paper	Marks	
	MAJOR PROJECT	11200 105	
MCA 401	i) Project Seminar and Viva	150	
MCA 401	ii) Final Project Report	100	
	iii) Monthly Reports (Internal)	150	
	Total Credit		18